AccScience Publishing / GPD / Online First / DOI: 10.36922/GPD025050007
Cite this article
142
Download
550
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW ARTICLE

In situ spatial profiling: Gaining molecular and cellular insights within content and context

Shu-Ti Lin1 Ian Molyneaux1 Chen Yeh1*
Show Less
1 Department of Oncology, OncoDxRx, Los Angeles, California, United States of America
Received: 27 January 2025 | Revised: 7 June 2025 | Accepted: 25 June 2025 | Published online: 10 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

For years, valuable clinical samples preserved in formalin-fixed paraffin-embedded tissues were underutilized. However, with advanced spatial multiomics profiling tools, crucial information has become increasingly accessible. Integrating genomic data with spatial information has unveiled crucial insights into cellular activities, enhancing our comprehension of biology. Measuring cellular gene expression while capturing spatial context – including morphology and intercellular relationships – is vital for understanding both normal and diseased biological processes. To date, this approach has illuminated the mechanisms of complex diseases, such as cancer and has facilitated the discovery of biomarkers for early disease detection and new therapeutic targets, accelerating progress in cancer immunotherapies. Cutting-edge single-cell analysis tools are rapidly emerging as the gold standard for investigating intricate biological systems and medical specimens, fueling a multi-billion-dollar industry. Single-cell spatial research, in particular, is inherently cross-disciplinary and addresses questions that remain hidden when focusing solely on the genome or transcriptome of large cell populations. Leveraging advances in single-cell spatial profiling can offer insights into improving cancer immunotherapy and other modern medical treatments. This review will delve into the diverse applications of spatial profiling technology, showcasing examples that demonstrate its ability to provide a detailed picture of the underlying molecular and cellular mechanisms within cells. As a comprehensive reference, this review empowers researchers and industry leaders to harness single-cell and spatial omics for breakthroughs in biomedicine and translational science.

Keywords
Formalin-fixed paraffin-embedded tissues
Genomics
Single-cell analysis
Spatial profiling
Transcriptomics
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Alon S, Goodwin DR, Sinha A, et al. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science. 2021;371(6528):eaax2656. doi: 10.1126/science.aax2656

 

  1. Battenberg K, Kelly ST, Ras RA, Hetherington NA, Hayashi M, Minoda A. A flexible cross-platform single-cell data processing pipeline. Nat Commun. 2022;13(1):6847. doi: 10.1038/s41467-022-34681-z

 

  1. Bressan D, Battistoni G, Hannon GJ. The dawn of spatial omics. Science. 2023;381(6657):eabq4964. doi: 10.1126/science.abq4964

 

  1. Hao Y, Stuart T, Kowalski MH, et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 2023;42:293-304. doi: 10.1038/s41587-023-01767-y

 

  1. Saviano A, Henderson NC, Baumert TF. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology. J Hepatol. 2020;73(5):1219-1230. doi: 10.1016/j.jhep.2020.06.004

 

  1. Piwecka M, Rajewsky N, Rybak-Wolf A. Single-cell and spatial transcriptomics: Deciphering brain complexity in health and disease. Nat Rev Neurol. 2023;19:346-362. doi: 10.1038/s41582-023-00809-y

 

  1. Yeh C, Lin ST, Yeh S. Single-cell spatial transcriptomics reveals cellular and molecular heterogeneity of non-small cell lung cancer. Cancer Ther Oncol Intl J. 2024;27(3):556213. doi: 10.19080/ctoij.2024.27.556213

 

  1. Magrill J, Moldoveanu D, Gu J, Lajoie M, Watson IR. Mapping the single cell spatial immune landscapes of the melanoma microenvironment. Clin Exp Metastasis. 2024;41(4):301-312. doi: 10.1007/s10585-023-10252-4

 

  1. Prokop S, Miller KR, Labra SR, et al. Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer’s disease patient brain samples. Acta Neuropathol. 2019;138(4):613-630. doi: 10.1007/s00401-019-02048-2

 

  1. Oh T, Kim G, Baek SH, et al. Comparative spatial transcriptomic profiling of severe acute respiratory syndrome coronavirus 2 Delta and Omicron variants infections in the lungs of cynomolgus macaques. J Med Virol. 2023;95(6):e28847. doi: 10.1002/jmv.28847

 

  1. Zimmerman SM, Fropf R, Kulasekara BR, et al. Spatially resolved whole transcriptome profiling in human and mouse tissue using digital spatial profiling. Genome Res. 2022;32(10):1892-1905. doi: 10.1101/gr.276206.121

 

  1. De Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374-403. doi: 10.1016/j.ccell.2023.02.016

 

  1. Lv B, Wang Y, Ma D, et al. Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol. 2022;13:844142. doi: 10.3389/fimmu.2022.844142

 

  1. Arora R, Cao C, Kumar M, et al. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nat Commun. 2023;14:5029. doi: 10.1038/s41467-023-40271-4

 

  1. Goodwin RJA, Platz SJ, Reis-Filho JS, Barry ST. Accelerating drug development using spatial multi-omics. Cancer Discov. 2024;14(4):620-624. doi: 10.1158/2159-8290.CD-24-0101

 

  1. Zeng Z, Li Y, Li Y, Luo Y. Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biol. 2022;23(1):83. doi: 10.1186/s13059-022-02653-7

 

  1. Hwang WL, Jagadeesh KA, Guo JA, et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat Genet. 2022;54:1178-91. doi: 10.1038/s41588-022-01134-8

 

  1. Aung TN, Warrell J, Martinez-Morilla S, et al. Spatially informed gene signatures for response to immunotherapy in melanoma. Clin Cancer Res. 2024;30(16):3520-3532. doi: 10.1158/1078-0432.ccr-23-3932

 

  1. Toki MI, Merritt CR, Wong PF, et al. High-plex predictive marker discovery for melanoma immunotherapy-treated patients using digital spatial profiling. Clin Cancer Res. 2019;25(18):5503-5512. doi: 10.1158/1078-0432.CCR-19-0104

 

  1. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533

 

  1. Regev A, Teichmann S, Rozenblatt-Rosen O, et al. The Human Cell Atlas White Paper. [arXiv Preprint]; 2018. Available from: https://doi.org/10.48550/arXiv.1810.05192 [Last accessed on 2025 Jan 04].

 

  1. Dimitriu MA, Lazar-Contes I, Roszkowski M, Mansuy IM. Single-cell multiomics techniques: From concepts to applications. Front Cell Dev Biol. 2022;10:954317. doi: 10.3389/fcell.2022.854317

 

  1. Danenberg E, Bardwell H, Zanotelli VR, et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat Genet. 2022;54(5):660-669. doi: 10.1038/s41588-022-01041-y

 

  1. Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023;24(8):494-515. doi: 10.1038/s41576-023-00580-2

 

  1. Chen YJ, Abila B, Mostafa Kamel Y. CAR-T: What is next? Cancers (Basel). 2023;15(3):663. doi: 10.3390/cancers15030663

 

  1. Wang V, Gauthier M, Decot V, Reppel L, Bensoussan D. Systematic review of CAR-T cell clinical trials up to 2022: Academic center input. Cancers (Basel). 2023;15(4):1003. doi: 10.3390/cancers15041003

 

  1. Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol. 2023;20:211-228. doi: 10.1038/s41571-023-00729-2

 

  1. Bai Z, Woodhouse S, Zhao Z, et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci Adv. 2022;8(23):eabj2820. doi: 10.1126/sciadv.abj2820

 

  1. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61-68. doi: 10.1016/j.canlet.2016.01.043

 

  1. Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Sig Transduct Target Ther. 2020;5:166. doi: 10.1038/s41392-020-00280-x

 

  1. Chen J, Wang Y, Ko J. Single-cell and spatially resolved omics: Advances and limitations. J Pharm Anal. 2023;13(8):833-835. doi: 10.1016/j.jpha.2023.07.002

 

  1. Chen A, Liao S, Cheng M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell. 2022;185:1777-1792.e21. doi: 10.1016/j.cell.2022.04.003

 

Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing