AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.4112
ORIGINAL RESEARCH ARTICLE

Differences in the expression of genes used in circadian rhythm generation in adult and pediatric gliomas

Austin Tyler Vogt1 Veda Sanjay Mohite1 Christopher Wayne Chandler1 Sadia Afrin1 Michael Eric Geusz1*
Show Less
1 Department of Biological Sciences, College of Arts and Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
Received: 1 July 2024 | Revised: 21 January 2025 | Accepted: 18 February 2025 | Published online: 19 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Altered circadian rhythms occur in several types of cancer cells. Expression of PER2, a core component of the circadian oscillator mechanism, and the related PER3 gene is suppressed in adult glioblastoma (GBM). GBM cell survival depends on the activity of the core clock gene ARNTL that expresses BMAL1 protein, and pharmacological manipulations of BMAL1 activity are promising novel anticancer treatments. Because circadian clock gene activity in pediatric gliomas is poorly understood relative to adult GBM, we completed a meta-analysis using 19 public transcriptome datasets to evaluate expression of core clock genes and selected clock-controlled genes in adult and pediatric GBM as well as medulloblastoma (MB), pilocytic astrocytoma (PA), and ependymoma (EP) tumors. Unlike adult GBM, PER2, and PER3 were not significantly downregulated in pediatric gliomas relative to non-tumor tissue. Adult GBM tissue displayed elevated expression of core clock gene CRY1 and clock-controlled gene NFIL3, unlike the pediatric GBM and low-grade gliomas. The TIMELESS clock gene was upregulated in all glioma types except PA. The clock gene set was differentially expressed across the four standard MB subtypes in pediatric datasets and was elevated in bulk-tumor measurements and single-cell RNA sequencing results from the Group 3 and 4 subtypes. Relative to older patients, MB samples from patients under 10 years of age had six repressed core clock genes. This study found that several types of malignant pediatric brain tumors have predictable expression patterns of specific circadian clock genes and may respond to treatments using pharmacological treatments exploiting these features.

Keywords
Circadian rhythm
Glioma stem cell
Glioblastoma
Medulloblastoma
Ependymoma
Pilocytic astrocytoma
Transcriptomics
Funding
Support for this project was provided internally by Bowling Green State University through assistance with computer technology.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Aronson BD, Bell-Pedersen D, Block GD, et al. Circadian rhythms. Brain Res Brain Res Rev. 1993;18(3):315-333. doi: 10.1016/0165-0173(93)90015-r

 

  1. Moore RY, Speh JC, Leak RK. Suprachiasmatic nucleus organization. Cell Tissue Res. 2002;309(1):89-98. doi: 10.1007/s00441-002-0575-2

 

  1. Hastings M, O’Neill JS, Maywood ES. Circadian clocks: Regulators of endocrine and metabolic rhythms. J Endocrinol. 2007;195(2):187-198. doi: 10.1677/JOE-07-0378

 

  1. Sompol P, Liu X, Baba K, et al. N-acetylserotonin promotes hippocampal neuroprogenitor cell proliferation in sleep-deprived mice. Proc Natl Acad Sci U S A. 2011;108(21):8844-8849. doi: 10.1073/pnas.1105114108

 

  1. Wang L, Wang C, Choi WS. Use of melatonin in cancer treatment: Where are we? Int J Mol Sci. 2022;23(7):3779. doi: 10.3390/ijms23073779

 

  1. Sulli G, Lam MTY, Panda S. Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer. 2019;5(8):475-494. doi: 10.1016/j.trecan.2019.07.002

 

  1. Ruben MD, Wu G, Smith DF, et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med. 2018;10(458):eaat8806. doi: 10.1126/scitranslmed.aat8806

 

  1. Takahashi JS. Molecular architecture of the circadian clock in mammals. In: Sassone-Corsi P, Christen Y, editors. A Time for Metabolism and Hormones. Cham: Springer; 2016.

 

  1. Dong Z, Zhang G, Qu M, et al. Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov. 2019;9(11):1556-1573. doi: 10.1158/2159-8290.CD-19-0215

 

  1. Geusz ME, Malik A, De A. Insights into oncogenesis from circadian timing in cancer stem cells. Crit Rev Oncog. 2021;26(4):1-17. doi: 10.1615/CritRevOncog.2021041960

 

  1. Gonzalez-Aponte MF, Damato AR, Simon T, et al. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. Cancer Cell. 2025;43(1):144-160. doi: 10.1016/j.ccell.2024.11.012

 

  1. Pan Y, van der Watt PJ, Kay SA. E-box binding transcription factors in cancer. Front Oncol. 2023;13:1223208. doi: 10.3389/fonc.2023.1223208

 

  1. Sharma VP, Anderson NT, Geusz ME. Circadian properties of cancer stem cells in glioma cell cultures and tumorspheres. Cancer Lett. 2014;345(1):65-74. doi: 10.1016/j.canlet.2013.11.009

 

  1. Fujioka A, Takashima N, Shigeyoshi Y. Circadian rhythm generation in a glioma cell line. Biochem Biophys Res Commun. 2006;346(1):169-174. doi: 10.1016/j.bbrc.2006.05.094

 

  1. Firdous S, Ghosh A, Saha S. BCSCdb: A database of biomarkers of cancer stem cells. Database (Oxford). 2022;2022:baac082. doi: 10.1093/database/baac082

 

  1. Hambardzumyan D, Bergers G. Glioblastoma: Defining tumor niches. Trends Cancer. 2015;1(4):252-265. doi: 10.1016/j.trecan.2015.10.009

 

  1. Hrushesky WJ, Lester B, Lannin D. Circadian coordination of cancer growth and metastatic spread. Int J Cancer. 1999;83(3):365-373.

 

  1. Filipski E, King VM, Li X, et al. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst. 2002;94(9):690-697.

 

  1. Wang Z, Su G, Dai Z, et al. Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif. 2021;54(3):e12988. doi: 10.1111/cpr.12988

 

  1. Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron. 2001;30(2):525-536.

 

  1. Benna C, Helfrich-Forster C, Rajendran S, et al. Genetic variation of clock genes and cancer risk: A field synopsis and meta-analysis. Oncotarget. 2017;8(14):23978-23995. doi: 10.18632/oncotarget.15074

 

  1. De La Cruz Minyety J, Shuboni-Mulligan DD, Briceno N, et al. Association of circadian clock gene expression with glioma tumor microenvironment and patient survival. Cancers (Basel). 2021;13(11). doi: 10.3390/cancers13112756

 

  1. Chen K, Wang Y, Li D, et al. Biological clock regulation by the PER gene family: A new perspective on tumor development. Front Cell Dev Biol. 2024;12:1332506. doi: 10.3389/fcell.2024.1332506

 

  1. Yang J, Antin P, Berx G, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(6):341-352. doi: 10.1038/s41580-020-0237-9

 

  1. Hwang-Verslues WW, Chang PH, Jeng YM, et al. Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy. Proc Natl Acad Sci U S A. 2013;110(30):12331-1236. doi: 10.1073/pnas.1222684110

 

  1. Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol. 2019;234:14535-14555. doi: 10.1002/jcp.28160

 

  1. Bowman RL, Wang Q, Carro A, Verhaak RG, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol. 2017;19(1):139-141. doi: 10.1093/neuonc/now247

 

  1. Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther. 2022;28(12):1930-1941. doi: 10.1111/cns.13966

 

  1. Chan P, Rich JN, Kay SA. Watching the clock in glioblastoma. Neuro Oncol. 2023;25(11):1932-1946. doi: 10.1093/neuonc/noad107

 

  1. Lambert SR, Witt H, Hovestadt V, et al. Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma. Acta Neuropathol. 2013;126(2):291-301. doi: 10.1007/s00401-013-1124-7

 

  1. Dias SF, Richards O, Elliot M, Chumas P. Pediatric-like brain tumors in adults. Adv Tech Stand Neurosurg. 2024;50:147-183. doi: 10.1007/978-3-031-53578-9_5

 

  1. Kool M, Koster J, Bunt J, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One. 2008;3(8):e3088. doi: 10.1371/journal.pone.0003088

 

  1. Honma S, Kawamoto T, Takagi Y, et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002;419(6909):841-844. doi: 10.1038/nature01123

 

  1. Green CB, Takahashi JS. Xenobiotic metabolism in the fourth dimension: PARtners in time. Cell Metab. 2006;4(1):3-4. doi: 10.1016/j.cmet.2006.06.002

 

  1. Kubo M. Diurnal rhythmicity programs of microbiota and transcriptional oscillation of circadian regulator, NFIL3. Front Immunol. 2020;11:552188. doi: 10.3389/fimmu.2020.552188

 

  1. Buczkowicz P, Hoeman C, Rakopoulos P, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014;46(5):451-456. doi: 10.1038/ng.2936

 

  1. Griesinger AM, Birks DK, Donson AM, et al. Characterization of distinct immunophenotypes across pediatric brain tumor types. J Immunol. 2013;191(9):4880-4888. doi: 10.4049/jimmunol.1301966

 

  1. Gump JM, Donson AM, Birks DK, et al. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathol Commun. 2015;3:30. doi: 10.1186/s40478-015-0211-5

 

  1. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-1068. doi: 10.1038/nature07385

 

  1. Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA, Buetow K. Rembrandt: Helping personalized medicine become a reality through integrative translational research. Mol Cancer Res. 2009;7(2):157-167. doi: 10.1158/1541-7786.MCR-08-0435

 

  1. Gravendeel LA, Kouwenhoven MC, Gevaert O, et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res. 2009;69(23):9065-9072. doi: 10.1158/0008-5472.CAN-09-2307

 

  1. Kamoun A, Idbaih A, Dehais C, et al. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas. Nat Commun. 2016;7:11263. doi: 10.1038/ncomms11263

 

  1. Murat A, Migliavacca E, Gorlia T, et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 2008;26(18):3015-3024. doi: 10.1200/JCO.2007.15.7164

 

  1. Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509-W514. doi: 10.1093/nar/gkaa407

 

  1. Cavalli FMG, Remke M, Rampasek L, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31(6):737-754.e6. doi: 10.1016/j.ccell.2017.05.005

 

  1. Robinson G, Parker M, Kranenburg TA, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488(7409):43-48. doi: 10.1038/nature11213

 

  1. Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29(11):1408-1414. doi: 10.1200/JCO.2009.27.4324

 

  1. Speir ML, Bhaduri A, Markov NS, et al. UCSC cell browser: Visualize your single-cell data. Bioinformatics. 2021;37(23):4578-4580. doi: 10.1093/bioinformatics/btab503

 

  1. Riemondy KA, Venkataraman S, Willard N, et al. Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro Oncol. 2022;24(2):273-286. doi: 10.1093/neuonc/noab135

 

  1. DeSisto J, Donson AM, Griesinger AM, et al. Tumor and immune cell types interact to produce heterogeneous phenotypes of pediatric high-grade glioma. Neuro Oncol. 2024;26(3):538-552. doi: 10.1093/neuonc/noad207

 

  1. Hoffman LM, Donson AM, Nakachi I, et al. Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol. 2014;127(5):731-745. doi: 10.1007/s00401-013-1212-8

 

  1. Witt H, Mack SC, Ryzhova M, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20(2):143-157. doi: 10.1016/j.ccr.2011.07.007

 

  1. Schwartzentruber J, Korshunov A, Liu XY, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226-231. doi: 10.1038/nature10833

 

  1. de Bont JM, Kros JM, Passier MM, et al. Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. Neuro Oncol. 2008;10(5):648-660. doi: 10.1215/15228517-2008-032

 

  1. Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 2001;15(8):995-1006. doi: 10.1101/gad.873501

 

  1. Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: An international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473-484. doi: 10.1007/s00401-012-0958-8

 

  1. Kool M, Jones DT, Jager N, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25(3):393-405. doi: 10.1016/j.ccr.2014.02.004

 

  1. Singh JA, Siddiqi M, Parameshwar P, Chandra-Mouli V. World Health Organization guidance on ethical considerations in planning and reviewing research studies on sexual and reproductive health in adolescents. J Adolesc Health. 2019;64(4):427-429. doi: 10.1016/j.jadohealth.2019.01.008

 

  1. Masri S, Kinouchi K, Sassone-Corsi P. Circadian clocks, epigenetics, and cancer. Curr Opin Oncol. 2015;27(1):50-56. doi: 10.1097/CCO.0000000000000153

 

  1. Angelousi A, Kassi E, Nasiri-Ansari N, Randeva HS, Kaltsas GA, Chrousos GP. Clock genes and cancer development in particular in endocrine tissues. Endocr Relat Cancer. 2019;26:R305-R317. doi: 10.1530/ERC-19-0094

 

  1. Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis. 2005;26(7):1241-1246. doi: 10.1093/carcin/bgi075

 

  1. Fan W, Chen X, Li C, Chen L, Liu P, Chen Z. The analysis of deregulated expression and methylation of the PER2 genes in gliomas. J Cancer Res Ther. 2014;10(3):636-640. doi: 10.4103/0973-1482.138202

 

  1. Zhang J, Zhu B, Liu Y, et al. High expression of circadian gene mPer2 diminishes radiosensitivity of tumor cells. Cancer Biother Radiopharm. 2008;23(5):561-570. doi: 10.1089/cbr.2008.0496

 

  1. Slat EA, Sponagel J, Marpegan L, et al. Cell-intrinsic, Bmal1- dependent circadian regulation of temozolomide sensitivity in glioblastoma. J Biol Rhythms. 2017;32(2):121-129. doi: 10.1177/0748730417696788

 

  1. Puram RV, Kowalczyk MS, de Boer CG, et al. Core circadian clock genes regulate leukemia stem cells in AML. Cell. 2016;165(2):303-316. doi: 10.1016/j.cell.2016.03.015

 

  1. Wagner PM, Sosa Alderete LG, Gorne LD, et al. Proliferative glioblastoma cancer cells exhibit persisting temporal control of metabolism and display differential temporal drug susceptibility in chemotherapy. Mol Neurobiol. 2019;56(2):1276-1292. doi: 10.1007/s12035-018-1152-3

 

  1. Lellupitiyage Don SS, Lin HH, Furtado JJ, Qraitem M, Taylor SR, Farkas ME. Circadian oscillations persist in low malignancy breast cancer cells. Cell Cycle. 2019; 18(19):2447-2453. doi: 10.1080/15384101.2019.1648957

 

  1. Fuhr L, El-Athman R, Scrima R, et al. The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer. EBioMedicine. 2018;33:105-121. doi: 10.1016/j.ebiom.2018.07.002

 

  1. Feng S, Xu S, Wen Z, Zhu Y. Retinoic acid-related orphan receptor RORbeta, circadian rhythm abnormalities and tumorigenesis (Review). Int J Mol Med. 2015;35(6):1493-1500. doi: 10.3892/ijmm.2015.2155

 

  1. Tian Y, Xie Y, Bai F, Wang J, Zhang D. Biological clock genes are crucial and promising biomarkers for the therapeutic targets and prognostic assessment in gastric cancer. J Gastrointest Cancer. 2024;55(2):900-912. doi: 10.1007/s12029-024-01028-4

 

  1. Ren Z, Ma S, Cheng X, Guo Y, Liu Z. Expression and clinical significance of TIMELESS in glioma. Int J Clin Exp Pathol. 2021;14(9):938-955.

 

  1. Wang F, Chen Q. The analysis of deregulated expression of the timeless genes in gliomas. J Cancer Res Ther. 2018;14(Supplement):S708-S712. doi: 10.4103/0973-1482.187382

 

  1. Zhao S, Wen S, Liu H, et al. High expression of TIMELESS predicts poor prognosis: A potential therapeutic target for skin cutaneous melanoma. Front Surg. 2022;9:917776. doi: 10.3389/fsurg.2022.917776

 

  1. Sangoram AM, Saez L, Antoch MP, et al. Mammalian circadian autoregulatory loop: A timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1- induced transcription. Neuron. 1998;21(5):1101-1113. doi: 10.1016/s0896-6273(00)80627-3

 

  1. Kurien P, Hsu PK, Leon J, et al. TIMELESS mutation alters phase responsiveness and causes advanced sleep phase. Proc Natl Acad Sci U S A. 2019;116(24):12045-12053. doi: 10.1073/pnas.1819110116

 

  1. Barrio-Alonso E, Lituma PJ, Notaras MJ, et al. Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling. Cell Rep. 2023;42(4):112375. doi: 10.1016/j.celrep.2023.112375

 

  1. Trebucq LL, Salvatore N, Wagner PM, Golombek DA, Chiesa JJ. Circadian clock gene bmal1 acts as a tumor suppressor gene in a mice model of human glioblastoma. Mol Neurobiol. 2024;61(8):5216-5229. doi: 10.1007/s12035-023-03895-7

 

  1. Zhang Y, Devocelle A, Desterke C, et al. BMAL1 knockdown leans epithelial-mesenchymal balance toward epithelial properties and decreases the chemoresistance of colon carcinoma cells. Int J Mol Sci. 2021;22(10):5247. doi: 10.3390/ijms22105247

 

  1. Wang Y, Narasimamurthy R, Qu M, et al. Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis. Nat Cancer. 2024;5(4):546-556. doi: 10.1038/s43018-024-00759-4

 

  1. Li Y, Zhou Y, Zhao C, et al. The circadian clock gene, BMAL1, promotes radiosensitization in nasopharyngeal carcinoma by inhibiting the epithelial-to-mesenchymal transition via the TGF-beta1/Smads/Snail1 axis. Oral Oncol. 2024;152:106798. doi: 10.1016/j.oraloncology.2024. 106798

 

  1. Li F, Guo L, Zhou M, et al. Cryptochrome 2 suppresses epithelial-mesenchymal transition by promoting trophoblastic ferroptosis in unexplained recurrent spontaneous abortion. Am J Pathol. 2024;194(7):1197-1217. doi: 10.1016/j.ajpath.2024.02.020

 

  1. Gotoh T, Kim JK, Liu J, et al. Model-driven experimental approach reveals the complex regulatory distribution of p53 by the circadian factor period 2. Proc Natl Acad Sci U S A. 2016;113(47):13516-13521. doi: 10.1073/pnas.1607984113

 

  1. Xia HC, Niu ZF, Ma H, et al. Deregulated expression of the Per1 and Per2 in human gliomas. Can J Neurol Sci. 2010;37(3):365-370.

 

  1. Winter SL, Bosnoyan-Collins L, Pinnaduwage D, Andrulis IL. Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia. 2007;9(10):797-800.

 

  1. Cao Q, Gery S, Dashti A, et al. A role for the clock gene per1 in prostate cancer. Cancer Res. 2009;69(19):7619-7625. doi: 10.1158/0008-5472.CAN-08-4199

 

  1. Zhao Q, Zheng G, Yang K, et al. The clock gene PER1 plays an important role in regulating the clock gene network in human oral squamous cell carcinoma cells. Oncotarget. 2016;7(43):70290-70302. doi: 10.18632/oncotarget.11844

 

  1. Tischkau SA, Mitchell JW, Tyan SH, Buchanan GF, Gillette MU. Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem. 2003;278(2):718-723. doi: 10.1074/jbc.M209241200

 

  1. Wang Q, Liu H, Wang Z, et al. Circadian gene Per3 promotes astroblastoma progression through the P53/BCL2/BAX signalling pathway. Gene. 2024;895:147978. doi: 10.1016/j.gene.2023.147978

 

  1. Zhang F, Sun H, Zhang S, Yang X, Zhang G, Su T. Overexpression of PER3 inhibits self-renewal capability and chemoresistance of colorectal cancer stem-like cells via inhibition of notch and beta-catenin signaling. Oncol Res. 2017;25(5):709-719. doi: 10.3727/096504016X14772331883976

 

  1. Chen B, Zhou X, Yang L, et al. Glioma stem cell signature predicts the prognosis and the response to tumor treating fields treatment. CNS Neurosci Ther. 2022;28(12):2148-2162. doi: 10.1111/cns.13956

 

  1. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157-173. doi: 10.1016/j.ccr.2006.02.019

 

  1. Yu M, Li W, Wang Q, Wang Y, Lu F. Circadian regulator NR1D2 regulates glioblastoma cell proliferation and motility. Oncogene. 2018;37(35):4838-4853. doi: 10.1038/s41388-018-0319-8

 

  1. Sulli G, Rommel A, Wang X, et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature. 2018;553(7688):351-355. doi: 10.1038/nature25170

 

  1. Nakashima A, Kawamoto T, Honda KK, et al. DEC1 modulates the circadian phase of clock gene expression. Mol Cell Biol. 2008;28(12):4080-4092. doi: 10.1128/MCB.02168-07

 

  1. Wu Y, Sato F, Yamada T, et al. The BHLH transcription factor DEC1 plays an important role in the epithelial-mesenchymal transition of pancreatic cancer. Int J Oncol. 2012;41(4):1337-1346. doi: 10.3892/ijo.2012.1559

 

  1. Xiong J, Yang H, Luo W, et al. The anti-metastatic effect of 8-MOP on hepatocellular carcinoma is potentiated by the down-regulation of bHLH transcription factor DEC1. Pharmacol Res. 2016;105:121-133. doi: 10.1016/j.phrs.2016.01.025

 

  1. Cheng AH, Bouchard-Cannon P, Hegazi S, et al. SOX2- dependent transcription in clock neurons promotes the robustness of the central circadian pacemaker. Cell Rep. 2019;26(12):3191-3202.e8. doi: 10.1016/j.celrep.2019.02.068

 

  1. Xie XP, Ganbold M, Li J, et al. Glioblastoma functional heterogeneity and enrichment of cancer stem cells with tumor recurrence. Neuron. 2024;112(24):4017-4032.e6. doi: 10.1016/j.neuron.2024.10.012

 

  1. De A, Beligala DH, Sharma VP, Burgos CA, Lee AM, Geusz ME. Cancer stem cell generation during epithelial-mesenchymal transition is temporally gated by intrinsic circadian clocks. Clin Exp Metastasis. 2020;37(5):617-635. doi: 10.1007/s10585-020-10051-1

 

  1. Huang P, Guo YD, Zhang HW. Identification of Hub genes in pediatric medulloblastoma by multiple-microarray analysis. J Mol Neurosci. 2020;70(4):522-531. doi: 10.1007/s12031-019-01451-4

 

  1. Iwadate Y, Matsutani T, Hirono S, Shinozaki N, Saeki N. Transforming growth factor-beta and stem cell markers are highly expressed around necrotic areas in glioblastoma. J Neurooncol. 2016;129(1):101-107. doi: 10.1007/s11060-016-2145-6

 

  1. Jin X, Kim LJY, Wu Q, et al. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat Med. 2017;23(11):1352-1361. doi: 10.1038/nm.4415

 

  1. Luo Z, Xia M, Shi W, et al. Human fetal cerebellar cell atlas informs medulloblastoma origin and oncogenesis. Nature. 2022;612(7941):787-794. doi: 10.1038/s41586-022-05487-2

 

  1. Ramaswamy V, Remke M, Bouffet E, et al. Risk stratification of childhood medulloblastoma in the molecular era: The current consensus. Acta Neuropathol. 2016;131(6):821-831. doi: 10.1007/s00401-016-1569-6

 

  1. Williamson D, Schwalbe EC, Hicks D, et al. Medulloblastoma group 3 and 4 tumors comprise a clinically and biologically significant expression continuum reflecting human cerebellar development. Cell Rep. 2022;40(5):111162. doi: 10.1016/j.celrep.2022.111162

 

  1. Tao R, Han K, Wu SC, Friske JD, Roussel MF, Northcott PA. Arrested development: The dysfunctional life history of medulloblastoma. Genes Dev. 2025;39:4-17. doi: 10.1101/gad.351936.124

 

  1. Van Ommeren R, Garzia L, Holgado BL, Ramaswamy V, Taylor MD. The molecular biology of medulloblastoma metastasis. Brain Pathol. 2020;30(3):691-702. doi: 10.1111/bpa.12811

 

  1. Paul MR, Zage PE. Overview and recent advances in the targeting of medulloblastoma cancer stem cells. Expert Rev Anticancer Ther. 2021;21(9):957-974. doi: 10.1080/14737140.2021.1932472

 

  1. Freire NH, Jaeger MDC, de Farias CB, et al. Targeting the epigenome of cancer stem cells in pediatric nervous system tumors. Mol Cell Biochem. 2023;478(10):2241-2255. doi: 10.1007/s11010-022-04655-2

 

  1. Pachocki CJ, Hol EM. Current perspectives on diffuse midline glioma and a different role for the immune microenvironment compared to glioblastoma. J Neuroinflamm. 2022;19(1):276. doi: 10.1186/s12974-022-02630-8

 

  1. Kojima S, Sher-Chen EL, Green CB. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 2012;26(24):2724-2736. doi: 10.1101/gad.208306.112

 

Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing