AccScience Publishing / GPD / Volume 3 / Issue 2 / DOI: 10.36922/gpd.2851
REVIEW

Application and research progress of CAR-T cell therapy in autoimmune diseases

Xiaoxiao Yu1,2† Haodong Shang1,2† Xinru Shen1,2 Jing Zhang1 Ting Chang3 Zhe Ruan3 Yongliang Jia1,2* Feng Gao1*
Show Less
1 Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
2 BGI College, Zhengzhou University, Zhengzhou, Henan, China
3 Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
Submitted: 30 January 2024 | Accepted: 24 April 2024 | Published: 5 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The conventional clinical therapies for autoimmune diseases (ADs) lack specificity, necessitating long-term medication that can lead to serious side effects. In contrast, chimeric antigen receptor (CAR) T cell therapy for ADs, characterized by fewer side effects and longer-lasting therapeutic effects, represents a new direction for the specific treatment of ADs. T cells modified with CAR genes possess the ability to not only secrete perforin, granzymes, and other molecules that target autoreactive immune cells but also to lead effector and regulatory T cells into autoimmune environments, thereby exerting transport, proliferation, and immune regulatory functions. Chimeric autoantibody receptor T cells can recognize and kill autoreactive cells expressing target autoantibodies through their specific antigens. In this article, we comprehensively expound on the application of CAR-T cell therapy in different ADs and summarize the current research progress in this regard. This review aims to enhance the application of CAR-T therapy in AD treatment and facilitate further studies aimed at addressing the existing gaps in CAR-T therapy for ADs.

Keywords
Autoimmune diseases
Chimeric antigen receptor T cells
T cells
Funding
This work was supported by projects of the Basic Research Fund of the Henan Institute of Medical and Pharmacological Sciences (grant numbers: 2022BP0116 and 2023BP0201), Henan Province Scientific and Technological Research grants (grant numbers: 232102310408 and 232102311196), a special project of scientific research for creating “Double First-Class” traditional Chinese medicine (grant number: HSRP-DFCTCM-2023-1-27), and Shaanxi Province Basic Research Fund of Henan Institute of Medical and Pharmacological Sciences Key Research and Development Plan (grant number: 2021ZDLSF02-01).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017;18(7):716-724. doi: 10.1038/ni.3731

 

  1. Anaya JM, Gómez L, Castiblanco J. Is there a common genetic basis for autoimmune diseases? Clin Dev Immunol. 2006;13(2-4):185-195. doi: 10.1080/17402520600876762

 

  1. Cooper GS, Bynum ML, Somers EC. Recent insights in the epidemiology of autoimmune diseases: Improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3-4):197-207. doi: 10.1016/j.jaut.2009.09.008

 

  1. Walsh SJ, Rau LM. Autoimmune diseases: A leading cause of death among young and middle-aged women in the United States. Am J Public Health. 2000;90(9):1463-1466. doi: 10.2105/ajph.90.9.1463

 

  1. Eggenhuizen PJ, Ng BH, Ooi JD. Treg enhancing therapies to treat autoimmune diseases. Int J Mol Sci. 2020;21(19):7015. doi: 10.3390/ijms21197015

 

  1. Anaya JM. The diagnosis and clinical significance of polyautoimmunity. Autoimmun Rev. 2014;13(4-5):423-426. doi: 10.1016/j.autrev.2014.01.049

 

  1. Kretschmann S, Völkl S, Reimann H, et al. Successful generation of CD19 chimeric antigen receptor T cells from patients with advanced systemic lupus erythematosus. Transplantat Cell Ther. 2023;29(1):27-33. doi: 10.1016/j.jtct.2022.10.004

 

  1. Aragón CC, Ruiz-Ordoñez I, Quintana JH, et al. Clinical characterization, outcomes, and prognosis in patients with systemic lupus erythematosus admitted to the intensive care unit. Lupus. 2020;29(9):1133-1139. doi: 10.1177/0961203320935176

 

  1. Quintero OL, Rojas-Villarraga A, Mantilla RD, Anaya JM. Autoimmune diseases in the intensive care unit. An update. Autoimmun Rev. 2013;12(3):380-395. doi: 10.1016/j.autrev.2012.06.002

 

  1. Matute-Blanch C, Montalban X, Comabella M. Multiple sclerosis, and other demyelinating and autoimmune inflammatory diseases of the central nervous system. Handb Clin Neurol. 2017;146:67-84. doi: 10.1016/b978-0-12-804279-3.00005-8

 

  1. Feng PH, Lin SM, Yu CT, et al. Inadequate antimicrobial treatment for nosocomial infection is a mortality risk factor for systemic lupus erythematous patients admitted to intensive care unit. Am J Med Sci. 2010;340(1):64-68. doi: 10.1097/MAJ.0b013e3181e0ef9b

 

  1. Rose NR. Prediction and prevention of autoimmune disease in the 21st century: A review and preview. Am J Epidemiol. 2016;183(5):403-406. doi: 10.1093/aje/kwv292

 

  1. Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283-297. doi: 10.1007/s00281-019-00733-8

 

  1. Xiao ZX, Miller JS, Zheng SG. An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev. 2021;20(2):102743. doi: 10.1016/j.autrev.2020.102743

 

  1. Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases. Cell Mol Life Sci. 2022;79(8):402. doi: 10.1007/s00018-022-04433-9

 

  1. Takeuchi Y, Hirota K, Sakaguchi S. Impaired T cell receptor signaling and development of T cell-mediated autoimmune arthritis. Immunol Rev. 2020;294(1):164-176. doi: 10.1111/imr.12841

 

  1. Lee JY, Hall JA, Kroehling L, et al. Serum amyloid a proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell. 2020;180(1):79-91.e16. doi: 10.1016/j.cell.2019.11.026

 

  1. Zhu H, Li R, Da Z, et al. Remission assessment of rheumatoid arthritis in daily practice in China: A cross-sectional observational study. Clin Rheumatol. 2018;37(3):597-605. doi: 10.1007/s10067-017-3850-z

 

  1. Hellesen A, Bratland E, Husebye ES. Autoimmune Addison’s disease - an update on pathogenesis. Ann Endocrinol (Paris). 2018;79(3):157-163. doi: 10.1016/j.ando.2018.03.008

 

  1. Sadeqi Nezhad M, Seifalian A, Bagheri N, Yaghoubi S, Karimi MH, Adbollahpour-Alitappeh M. Chimeric antigen receptor based therapy as a potential approach in autoimmune diseases: How close are we to the treatment? Front Immunol. 2020;11:603237. doi: 10.3389/fimmu.2020.603237

 

  1. Yasunaga M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Semin Cancer Biol. 2020;64:1-12. doi: 10.1016/j.semcancer.2019.06.001

 

  1. Reincke SM, von Wardenburg N, Homeyer MA, et al. Chimeric autoantibody receptor T cells deplete NMDA receptor-specific B cells. Cell. 2023;186(23):5084-5097.e18. doi: 10.1016/j.cell.2023.10.001

 

  1. Selewski DT, Shah GV, Mody RJ, Rajdev PA, Mukherji SK. Rituximab (Rituxan). Am J Neuroradiol. 2010;31(7):1178-1180. doi: 10.3174/ajnr.A2142

 

  1. Flugel CL, Majzner RG, Krenciute G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2023;20(1):49-62. doi: 10.1038/s41571-022-00704-3

 

  1. Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T cell therapy in hematological malignancies: Current opportunities and challenges. Front Immunol. 2022;13:927153. doi: 10.3389/fimmu.2022.927153

 

  1. Dominguez G. The CART gene: Structure and regulation. Peptides. 2006;27(8):1913-1918. doi: 10.1016/j.peptides.2006.01.025

 

  1. Huang R, Li X, He Y, et al. Recent advances in CAR-T cell engineering. J Hematol Oncol. 2020;13(1):86. doi: 10.1186/s13045-020-00910-5

 

  1. Sterner RC, Sterner RM. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. doi: 10.1038/s41408-021-00459-7

 

  1. Honikel MM, Olejniczak SH. Co-stimulatory receptor signaling in CAR-T cells. Biomolecules. 2022;12(9):1303. doi: 10.3390/biom12091303

 

  1. López-Cantillo G, Urueña C, Camacho BA, Ramírez- Segura C. CAR-T cell performance: How to improve their persistence? Front Immunol. 2022;13:878209. doi: 10.3389/fimmu.2022.878209

 

  1. Hu Y, Wang J, Wei G, et al. A retrospective comparison of allogenic and autologous chimeric antigen receptor T cell therapy targeting CD19 in patients with relapsed/refractory acute lymphoblastic leukemia. Bone Marrow Transplant. 2019;54(8):1208-1217. doi: 10.1038/s41409-018-0403-2

 

  1. Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545-553. doi: 10.1056/NEJMoa1910607

 

  1. Abreu TR, Fonseca NA, Gonçalves N, Moreira JN. Current challenges and emerging opportunities of CAR-T cell therapies. J Control Release. 2020;319:246-261. doi: 10.1016/j.jconrel.2019.12.047

 

  1. Mougiakakos D, Krönke G, Völkl S, et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med. 2021;385(6):567-569. doi: 10.1056/NEJMc2107725

 

  1. Oh S, Mao X, Manfredo-Vieira S, et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol. 2023;41(9):1229-1238. doi: 10.1038/s41587-022-01637-z

 

  1. Terskikh AV, Le Doussal JM, Crameri R, Fisch I, Mach JP, Kajava AV. “Peptabody”: A new type of high avidity binding protein. Proc Natl Acad Sci U S A. 1997;94(5):1663-1668. doi: 10.1073/pnas.94.5.1663

 

  1. Fortuna G, Brennan MT. Systemic lupus erythematosus: Epidemiology, pathophysiology, manifestations, and management. Dent Clin North Am. 2013;57(4):631-655. doi: 10.1016/j.cden.2013.06.003

 

  1. Barber MRW, Drenkard C, Falasinnu T, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(9):515-532. doi: 10.1038/s41584-021-00668-1

 

  1. Yu H, Nagafuchi Y, Fujio K. Clinical and immunological biomarkers for systemic lupus erythematosus. Biomolecules. 2021;11(7):928. doi: 10.3390/biom11070928

 

  1. Basta F, Fasola F, Triantafyllias K, Schwarting A. Systemic lupus erythematosus (SLE) therapy: The old and the new. Rheumatol Ther. 2020;7(3):433-446. doi: 10.1007/s40744-020-00212-9

 

  1. Zhang W, Feng J, Cinquina A, et al. Treatment of systemic lupus erythematosus using BCMA-CD19 compound CAR. Stem Cell Rev Rep. 2021;17(6):2120-2123. doi: 10.1007/s12015-021-10251-6

 

  1. Mackensen A, Müller F, Mougiakakos D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022;28(10):2124-2132. doi: 10.1038/s41591-022-02017-5

 

  1. Davidson HW, Cepeda JR, Sekhar NS, et al. High-efficiency generation of antigen-specific primary mouse cytotoxic T cells for functional testing in an autoimmune diabetes model. J Visual Exp. 2019;(150): 10.3791/59985. doi:10.3791/59985

 

  1. Zhang L, Sosinowski T, Cox AR, et al. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II: Peptide complex modulate the progression of autoimmune diabetes. J Autoimmun. 2019;96:50-58. doi: 10.1016/j.jaut.2018.08.004

 

  1. Tenspolde M, Zimmermann K, Weber LC, et al. Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun. 2019;103:102289. doi: 10.1016/j.jaut.2019.05.017

 

  1. Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10(5):267-276. doi: 10.1038/nrclinonc.2013.46

 

  1. Stadinski BD, Zhang L, Crawford F, Marrack P, Eisenbarth GS, Kappler JW. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci U S A. 2010;107(24):10978-10983. doi: 10.1073/pnas.1006545107

 

  1. Spanier JA, Fung V, Wardell CM, et al. Insulin B peptide-MHC class II-specific chimeric antigen receptor-Tregs prevent autoimmune diabetes. bioRxiv. 2023;2023.02.23.529737 doi: 10.1101/2023.02.23.529737

 

  1. Melchionda V, Harman KE. Pemphigus vulgaris and pemphigus foliaceus: An overview of the clinical presentation, investigations and management. Clin Exp Dermatol. 2019;44(7):740-746. doi: 10.1111/ced.14041

 

  1. Kridin K. Pemphigus group: Overview, epidemiology, mortality, and comorbidities. Immunol Res. 2018;66(2):255-270. doi: 10.1007/s12026-018-8986-7

 

  1. Malik AM, Tupchong S, Huang S, Are A, Hsu S, Motaparthi K. An updated review of pemphigus diseases. Medicina (Kaunas). 2021;57(10):1080. doi: 10.3390/medicina57101080

 

  1. Ellebrecht CT, Bhoj VG, Nace A, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016;353(6295):179-184. doi: 10.1126/science.aaf6756

 

  1. Lee J, Lundgren DK, Mao X, et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J Clin Invest. 2020;130(12):6317-6324. doi: 10.1172/jci138416

 

  1. Mantegazza R, Bernasconi P, Cavalcante P. Myasthenia gravis: From autoantibodies to therapy. Curr Opin Neurol. 2018;31(5):517-525. doi: 10.1097/wco.0000000000000596

 

  1. Hehir MK, Silvestri NJ. Generalized myasthenia gravis: Classification, clinical presentation, natural history, and epidemiology. Neurol Clin. 2018;36(2):253-260. doi: 10.1016/j.ncl.2018.01.002

 

  1. Granit V, Benatar M, Kurtoglu M, et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): A prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 2023;22(7):578-590. doi: 10.1016/s1474-4422(23)00194-1

 

  1. O’Leary K. CAR T cell therapy for myasthenia gravis. Nat Med. 2023. doi: 10.1038/d41591-023-00062-2

 

  1. Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): A double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394(10206):1352-1363. doi: 10.1016/s0140-6736(19)31817-3

 

  1. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202(4):473-477. doi: 10.1084/jem.20050304

 

  1. Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. Lancet. 2004;364(9451):2106-2112. doi: 10.1016/s0140-6736(04)17551-x

 

  1. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805-815. doi: 10.1016/s1474-4422(07)70216-8

 

  1. Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177-189. doi: 10.1212/wnl.0000000000001729

 

  1. Derdelinckx J, Reynders T, Wens I, Cools N, Willekens B. Cells to the rescue: Emerging cell-based treatment approaches for NMOSD and MOGAD. Int J Mol Sci. 2021;22(15):177-189. doi: 10.3390/ijms22157925

 

  1. Qin C, Tian DS, Zhou LQ, et al. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: Phase 1 trial interim results. Signal Transduct Target Ther. 2023;8(1):5. doi: 10.1038/s41392-022-01278-3

 

  1. van Venrooij WJ, van Beers JJ, Pruijn GJ. Anti-CCP antibodies: The past, the present and the future. Nat Rev Rheumatol. 2011;7(7):391-398. doi: 10.1038/nrrheum.2011.76

 

  1. Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD. Anti-citrullinated peptides as autoantigens in rheumatoid arthritis-relevance to treatment. Autoimmun Rev. 2014;13(11):1114-1120. doi: 10.1016/j.autrev.2014.08.012

 

  1. Cantaert T, Teitsma C, Tak PP, Baeten D. Presence and role of anti-citrullinated protein antibodies in experimental arthritis models. Arthritis Rheum. 2013;65(4):939-948. doi: 10.1002/art.37839

 

  1. Koivula MK, Heliövaara M, Ramberg J, et al. Autoantibodies binding to citrullinated telopeptide of type II collagen and to cyclic citrullinated peptides predict synergistically the development of seropositive rheumatoid arthritis. Ann Rheum Dis. 2007;66(11):1450-1455. doi: 10.1136/ard.2006.062919

 

  1. Zhang B, Wang Y, Yuan Y, et al. In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Ann Rheum Dis. 2021;80(2):176-184. doi: 10.1136/annrheumdis-2020-217844

 

  1. Orvain C, Boulch M, Bousso P, Allanore Y, Avouac J. Is there a place for chimeric antigen receptor-T cells in the treatment of chronic autoimmune rheumatic diseases? Arthritis Rheumatol. 2021;73(11):1954-1965. doi: 10.1002/art.41812

 

  1. Nepom GT, Byers P, Seyfried C, et al. HLA genes associated with rheumatoid arthritis. Identification of susceptibility alleles using specific oligonucleotide probes. Arthritis Rheum. 1989;32(1):15-21. doi: 10.1002/anr.1780320104

 

  1. Whittington KB, Prislovsky A, Beaty J, Albritton L, Radic M, Rosloniec EF. CD8(+) T cells expressing an HLA-DR1 chimeric antigen receptor target autoimmune CD4(+) T cells in an antigen-specific manner and inhibit the development of autoimmune arthritis. J Immunol. 2022;208(1):16-26. doi: 10.4049/jimmunol.2100643

 

  1. Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology. 2004;126(6):1504-1517. doi: 10.1053/j.gastro.2004.01.063

 

  1. Ochs HD, Gambineri E, Torgerson TR. IPEX, FOXP3 and regulatory T-cells: A model for autoimmunity. Immunol Res. 2007;38(1-3):112-121. doi: 10.1007/s12026-007-0022-2

 

  1. Ye C, Yano H, Workman CJ, Vignali DAA. Interleukin-35: Structure, function and its impact on immune-related diseases. J Interferon Cytokine Res. 2021;41(11):391-406. doi: 10.1089/jir.2021.0147

 

  1. Rubtsov YP, Rasmussen JP, Chi EY, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546-558. doi: 10.1016/j.immuni.2008.02.017

 

  1. Elinav E, Waks T, Eshhar Z. Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology. 2008;134(7):2014-2024. doi: 10.1053/j.gastro.2008.02.060

 

  1. Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther. 2014;22(5):1018-1028. doi: 10.1038/mt.2014.41

 

  1. McFarland HF, Martin R. Multiple sclerosis: A complicated picture of autoimmunity. Nat Immunol. 2007;8(9):913-919. doi: 10.1038/ni1507

 

  1. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545-558. doi: 10.1038/nri3871

 

  1. Fransson M, Piras E, Burman J, et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation. 2012;9:112. doi: 10.1186/1742-2094-9-112

 

  1. De Paula Pohl A, Schmidt A, Zhang AH, Maldonado T, Königs C, Scott DW. Engineered regulatory T cells expressing myelin-specific chimeric antigen receptors suppress EAE progression. Cell Immunol. 2020;358:104222. doi: 10.1016/j.cellimm.2020.104222

 

  1. Huang J, Huang X, Huang J. CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Front Immunol. 2022;13:1019115. doi: 10.3389/fimmu.2022.1019115

 

  1. Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739-748. doi: 10.1038/s41591-018-0036-4

 

  1. Wehrli M, Gallagher K, Chen YB, et al. Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS). J Immunother Cancer. 2022;10(1):e003847. doi: 10.1136/jitc-2021-003847

 

  1. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731-738. doi: 10.1038/s41591-018-0041-7

 

  1. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507-1517. doi: 10.1056/NEJMoa1407222

 

  1. Mehta P, Cron RQ, Hartwell J, Manson JJ, Tattersall RS. Silencing the cytokine storm: The use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. 2020;2(6):e358-e367. doi: 10.1016/s2665-9913(20)30096-5

 

  1. Sterner RM, Sakemura R, Cox MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019;133(7):697-709. doi: 10.1182/blood-2018-10-881722

 

  1. Razeghian E, Nasution MKM, Rahman HS, et al. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res Ther. 2021;12(1):428. doi: 10.1186/s13287-021-02510-7

 

  1. Di Stasi A, Tey SK, Dotti G, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673-1683. doi: 10.1056/NEJMoa1106152

 

  1. Chohan KL, Siegler EL, Kenderian SS. CAR-T cell therapy: The efficacy and toxicity balance. Curr Hematol Malig Rep. 2023;18(2):9-18. doi: 10.1007/s11899-023-00687-7

 

  1. Sakemura R, Can I, Siegler EL, Kenderian SS. In vivo CART cell imaging: Paving the way for success in CART cell therapy. Mol Ther Oncol. 2021;20:625-633. doi: 10.1016/j.omto.2021.03.003

 

  1. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet. 2015;385(9967):517-528. doi: 10.1016/s0140-6736(14)61403-3

 

  1. Mei H, Jiang H, Wu Y, et al. Neurological toxicities and coagulation disorders in the cytokine release syndrome during CAR-T therapy. Br J Haematol. 2018;181(5):689-692. doi: 10.1111/bjh.14680

 

  1. Gupta S, Simic M, Sagan SA, et al. CAR-T cell-mediated B-cell depletion in central nervous system autoimmunity. Neurol Neuroimmunol Neuroinflamm. 2023;10(2):e200080. doi: 10.1212/nxi.0000000000200080

 

  1. Fiorenza S, Ritchie DS, Ramsey SD, Turtle CJ, Roth JA. Value and affordability of CAR T-cell therapy in the United States. Bone Marrow Transplantat. 2020;55(9):1706-1715. doi: 10.1038/s41409-020-0956-8

 

  1. Műzes G, Sipos F. CAR-based therapy for autoimmune diseases: A novel powerful option. Cells. 2023;12(11):1534. doi: 10.3390/cells12111534

 

  1. Atilla E, Kilic P, Gurman G. Cellular therapies: Day by day, all the way. Transfus Apher Sci. 2018;57(2):187-196. doi: 10.1016/j.transci.2018.04.019

 

  1. Bao C, Gao Q, Li LL, et al. The application of nanobody in CAR-T therapy. Biomolecules. 2021;11(2):238. doi: 10.3390/biom11020238

 

  1. Ye B, Hu Y, Zhang M, Huang H. Research advance in lipid nanoparticle-mRNA delivery system and its application in CAR-T cell therapy. Zhejiang Xue Xue Bao Yi Xue Ban. 2022;51(2):185-191. doi: 10.3724/zdxbyxb-2022-0047

 

  1. Bozza M, De Roia A, Correia MP, et al. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Sci Adv. 2021;7(16):eabf1333. doi: 10.1126/sciadv.abf1333
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing