Progress in the molecular mechanisms of tanshinone IIA in modulating digestive system diseases
Tanshinone IIA (Tan IIA), a bioactive lipophilic compound isolated from the traditional Chinese medicinal plant Salvia miltiorrhiza, demonstrates multitarget therapeutic effects encompassing anti-inflammatory, antioxidant, anti-fibrotic, and anti-neoplastic mechanisms, as evidenced by contemporary pharmacological research. With its unique anti-inflammatory advantages, Tan IIA has been widely used for the management of digestive disorders. This agent suppresses the overproduction of pro-inflammatory mediators and disrupts inflammatory signaling cascades, thereby effectively mitigating disease progression across inflammation-driven pathologies. In addition, Tan IIA has demonstrated strong antitumor activity. This agent suppresses the proliferation, migration, and invasion of tumor cells through interference with oncogenic signaling pathways and the activation of apoptotic pathways, demonstrating significant therapeutic potential in oncology. Such multitarget and multi-mechanism action properties make Tan IIA a promising candidate for inflammation control and tumor suppression. This review elucidates Tan IIA’s mechanisms in gastric, hepatic, and intestinal pathologies, aiming to provide a scientific basis and reference for subsequent in-depth studies and clinical translation.
- Khan FB, Singh P, Jamous YF, et al. Multifaceted pharmacological potentials of curcumin, genistein, and tanshinone IIA through proteomic approaches: An in-depth review. Cancers (Basel). 2022;15(1):249. doi: 10.3390/cancers15010249
- Alam SSM, Samanta A, Uddin F, Ali S, Hoque M. Tanshinone IIA targeting cell signaling pathways: A plausible paradigm for cancer therapy. Pharmacol Rep. 2023;75(4):907-922. doi: 10.1007/s43440-023-00507-y
- Du L, Guan C, Zhang H, Jia H, Wan Q. Harnessing the therapeutic value of tanshinone IIA: A breakthrough therapy in cardiovascular diseases. Front Pharmacol. 2025;16:1620152. doi: 10.3389/fphar.2025.1620152
- Peng H, Zhang X. Tanshinone IIA suppresses the proliferation and fibrosis of mesangial cell in diabetic nephropathy though WTAP-mediated m6A methylation. Sci Rep. 2025;15(1):21261. doi: 10.1038/s41598-025-03738-6
- Zhang S, Dong X, Chen G, Wang C. Tanshinone IIA alleviates LPS-induced acute kidney injury by inhibiting RIP3/Nrf2- mediated oxidative stress. Ren Fail. 2025;47(1):2593719. doi: 10.1080/0886022X.2025.2593719
- Guo C, Ai S, Wu M, Zhai R, Chen J. Tanshinone IIA inhibits NADPH oxidase 4 expression by regulating Sestrin2- mediated AMPK/mTOR signaling pathway to alleviate myofibroblast activation in pulmonary fibrosis. Am J Chin Med. 2025;53(6):1845-1863. doi: 10.1142/S0192415X25500685
- Ding Q, Wang C, Zhang Z, et al. An explainable AI approach to surgical and radiotherapy interventions for optimized treatment decision-making in early-stage non-small cell lung cancer. Transl Lung Cancer Res. 2025;14(6):2011-2030. doi: 10.21037/tlcr-2025-152
- Liu Q, Zhou Q, Yang X, et al. Tanshinone IIA is synergistic with the PARP inhibitor olaparib in inducing BRCAs-proficient and -deficient triple-negative breast cancer cell apoptosis. Med Oncol Northwood Lond Engl. 2025;42(9):419. doi: 10.1007/s12032-025-02968-y
- Yu H, Li Y, Yang Y, et al. Tanshinone IIA inhibits neuronal ferroptosis and relieves cerebral ischemia-reperfusion injury by regulating miR-449a/ACSL4. Metab Brain Dis. 2025;40(6):231. doi: 10.1007/s11011-025-01660-4
- Rong Y, Li Q, Du Y, et al. Preclinical evidence and potential mechanisms of tanshinone ⅡA on cognitive function in animal models of Alzheimer’s disease: A systematic review and meta-analysis. Front Pharmacol. 2025;16:1603861. doi: 10.3389/fphar.2025.1603861
- Zhao R, Wang H, Li S, et al. Tanshinone IIA@β-cyclodextrin encapsulated with eucommia ulmoides rubber/acetylated starch film as novel oral delivery system for therapy of orthotopic colon cancer. Carbohydr Polym. 2025;353:123295. doi: 10.1016/j.carbpol.2025.123295
- Ansari MA, Khan FB, Safdari HA, et al. Prospective therapeutic potential of tanshinone IIA: An updated overview. Pharmacol Res. 2021;164:105364. doi: 10.1016/j.phrs.2020.105364
- Zhou L, Sui H, Wang T, et al. Tanshinone IIA reduces secretion of proangiogenic factors and inhibits angiogenesis in human colorectal cancer. Oncol Rep. 2020;43(4):1159-1168. doi: 10.3892/or.2020.7498
- Kannan G, Paul BM, Thangaraj P. Stimulation, regulation, and inflammaging interventions of natural compounds on nuclear factor kappa B (NF-kB) pathway: A comprehensive review. Inflammopharmacology. 2025;33:145-162. doi: 10.1007/s10787-024-01635-4
- Chawla M, Mukherjee T, Deka A, et al. An epithelial Nfkb2 pathway exacerbates intestinal inflammation by supplementing latent RelA dimers to the canonical NF-κB module. Proc Natl Acad Sci U S A. 2021;118(25):e2024828118. doi: 10.1073/pnas.2024828118
- Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal. 2024;17(818):eadh1641. doi: 10.1126/scisignal.adh1641
- Song Z, Feng Z, Wang X, Li J, Zhang D. NFKB1 as a key player in tumor biology: From mechanisms to therapeutic implications. Cell Biol Toxicol. 2025;41(1):29. doi: 10.1007/s10565-024-09974-2
- Bahrami A, Khalaji A, Bahri Najafi M, et al. NF-κB pathway and angiogenesis: Insights into colorectal cancer development and therapeutic targets. Eur J Med Res. 2024;29(1):610. doi: 10.1186/s40001-024-02168-w
- Liang Q, Pan F, Qiu H, et al. CLC-3 regulates TGF-β/ smad signaling pathway to inhibit the process of fibrosis in hypertrophic scar. Heliyon. 2024;10(3):e24984. doi: 10.1016/j.heliyon.2024.e24984
- Fan Y, Kang S, Shao T, Xu L, Chen J. Activation of SIRT3 by tanshinone IIA ameliorates renal fibrosis by suppressing the TGF-β/TSP-1 pathway and attenuating oxidative stress. Cell Signal. 2024;122:111348. doi: 10.1016/j.cellsig.2024.111348
- Feng F, Li N, Cheng P, et al. Tanshinone IIA attenuates silica-induced pulmonary fibrosis via inhibition of TGF-β1- smad signaling pathway. Biomed Pharmacother Biomedecine Pharmacother. 2020;121:109586. doi: 10.1016/j.biopha.2019.109586
- Jiang Y, Hu F, Li M, Li Q. Tanshinone IIA ameliorates the development of dermal fibrosis in systemic sclerosis. Clin Exp Pharmacol Physiol. 2024;51(2):e13834. doi: 10.1111/1440-1681.13834
- Liu H, Liu C, Wang M, et al. Tanshinone IIA affects the malignant growth of cholangiocarcinoma cells by inhibiting the PI3K-akt-mTOR pathway. Sci Rep. 2021;11(1):19268. doi: 10.1038/s41598-021-98948-z
- Zhang R, Liu Y, You J, Ge B. Tanshinone IIA inhibits ischemia-reperfusion-induced inflammation, ferroptosis and apoptosis through activation of the PI3K/akt/mTOR pathway. Hum Exp Toxicol. 2023;42:09603271231180864. doi: 10.1177/09603271231180864
- Wang T, Zou J, Wu Q, et al. Tanshinone IIA derivatives induced S-phase arrest through stabilizing c-myc G-quadruplex DNA to regulate ROS-mediated PI3K/akt/ mTOR pathway. Eur J Pharmacol. 2021;912:174586. doi: 10.1016/j.ejphar.2021.174586
- Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023;22(1):138. doi: 10.1186/s12943-023-01827-6
- Hwang C, Kang YK, Kim JY, et al. TFE3/PI3K/akt/mTOR axis in renal cell carcinoma affects tumor microenvironment. Am J Pathol. 2024;194(7):1306-1316. doi: 10.1016/j.ajpath.2024.02.022
- Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/ MAPK signalling pathway and tumorigenesis (review). Exp Ther Med. 2020;19(3):1997-2007. doi: 10.3892/etm.2020.8454
- Wang Y, Zhang J, Zheng CC, et al. C20orf24 promotes colorectal cancer progression by recruiting Rin1 to activate Rab5-mediated mitogenactivated protein kinase/ extracellular signal-regulated kinase signalling. Clin Transl Med. 2022;12(4):e796. doi: 10.1002/ctm2.796
- Zhang W, Liu M, Ji Y, et al. Tanshinone IIA inhibits endometrial carcinoma growth through the MAPK/ERK/ TRIB3 pathway. Arch Biochem Biophys. 2023;743:109655. doi: 10.1016/j.abb.2023.109655
- Xu Y, Wang YR, Peng WP, Bu HM, Zhou Y, Wu Q. Tanshinone IIA alleviates pulmonary fibrosis by inhibiting pyroptosis of alveolar epithelial cells through the MAPK signaling pathway. Phytother Res. 2025;39(1):282-297. doi: 10.1002/ptr.8372
- Sabaawy HE, Ryan BM, Khiabanian H, Pine SR. JAK/ STAT of all trades: Linking inflammation with cancer development, tumor progression and therapy resistance. Carcinogenesis. 2021;42(12):1411-1419. doi: 10.1093/carcin/bgab075
- Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther. 2021;6(1):402. doi: 10.1038/s41392-021-00791-1
- Maciag G, Hansen SL, Krizic K, et al. JAK/STAT signaling promotes the emergence of unique cell states in ulcerative colitis. Stem Cell Rep. 2024;19(8):1172-1188. doi: 10.1016/j.stemcr.2024.06.006
- Calviño-Suárez C, Durán-Rubí M, Brea J, et al. Exploration of JAK/STAT pathway activation in ulcerative colitis reveals sex-dependent activation of JAK2/STAT3 in the inflammatory response. Front Immunol. 2025;16:1609740. doi: 10.3389/fimmu.2025.1609740
- Du X, Wang X, Cui K, et al. Tanshinone IIA and astragaloside IV inhibit miR-223/JAK2/STAT1 signalling pathway to alleviate lipopolysaccharide-induced damage in nucleus pulposus cells. Dis Markers. 2021;2021(1):6554480. doi: 10.1155/2021/6554480
- Shukla GT, Yadav S, Shukla A, et al. Histopathological features of chronic gastritis and its association with Helicobacter pylori infection. Korean J Gastroenterol Taehan Sohwagi Hakhoe Chi. 2024;84(4):153-159. doi: 10.4166/kjg.2024.063
- Liu T, Chen Z, Sun L, Xiong L. Role of blood metabolites in mediating the effect of gut microbiota on chronic gastritis. Microbiol Spectr. 2024;12(11):e0149024. doi: 10.1128/spectrum.01490-24
- Xie R, You N, Chen WY, et al. Helicobacter pylori-induced angiopoietin-like 4 promotes gastric bacterial colonization and gastritis. Research (Wash D C). 2024;7:0409. doi: 10.34133/research.0409
- Xiong C, Chen Z, Wu X, et al. The impact of multidimensional interactions among Helicobacter pylori infection, tumor microenvironment, and gut microbiota on gastric cancer immune response. Eur J Pharmacol. 2026;1011:178401. doi: 10.1016/j.ejphar.2025.178401
- Ansari S, Yamaoka Y. Role of vacuolating cytotoxin a in Helicobacter pylori infection and its impact on gastric pathogenesis. Expert Rev Anti Infect Ther. 2020;18(10):987- 996. doi: 10.1080/14787210.2020.1782739
- Yuan L, Yao S, Qu N, et al. Helicobacter pylori VacA modulates TRAF1-mediated 4-1BB/NF-kappaB axis to induce host apoptosis and chronic inflammatory damage. Mol Med Camb Mass. 2025;31(1):317. doi: 10.1186/s10020-025-01349-5
- Xiao S, Shen Y, Zhang M, Liu X, Cai T, Wang F. VacA promotes pyroptosis via TNFAIP3/TRAF1 signaling to induce onset of atrophic gastritis. Microbiol Res. 2025;296:128142. doi: 10.1016/j.micres.2025.128142
- Chen X, Zhou B, Wang S, et al. Intestinal metaplasia key molecules and UPP1 activation via Helicobacter pylori/ NF-kB: Drivers of malignant progression in gastric cancer. Cancer Cell Int. 2024;24(1):399. doi: 10.1186/s12935-024-03598-6
- Ma X, Zhang L, Gao F, Jia W, Li C. Salvia miltiorrhiza and tanshinone IIA reduce endothelial inflammation and atherosclerotic plaque formation through inhibiting COX-2. Biomed Pharmacother Biomedecine Pharmacother. 2023;167:115501. doi: 10.1016/j.biopha.2023.115501
- Zhang C, Chen F, Wang Y, Zhang K, Yang X, Wang X. Tanshinone IIA protects intestinal epithelial cells from deoxynivalenol-induced pyroptosis. Ecotoxicol Environ Saf. 2024;269:115743. doi: 10.1016/j.ecoenv.2023.115743
- Xu J, Zhi X, Zhang Y, Ding R. Tanshinone IIA alleviates IL-1β-induced chondrocyte apoptosis and inflammation by regulating FBXO11 expression. Clinics. 2024;79:100365. doi: 10.1016/j.clinsp.2024.100365
- Weng J, Wu XF, Shao P, Liu XP, Wang CX. Medicine for chronic atrophic gastritis: A systematic review, meta- and network pharmacology analysis. Ann Med. 2023;55(2):2299352. doi: 10.1080/07853890.2023.2299352
- Wang L, Lian YJ, Dong JS, et al. Traditional Chinese medicine for chronic atrophic gastritis: Efficacy, mechanisms and targets. World J Gastroenterol. 2025;31(9):102053. doi: 10.3748/wjg.v31.i9.102053
- Zhou W, Zhang H, Wang X, et al. Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis. Phytomedicine Int J Phytother Phytopharm. 2022;95:153837. doi: 10.1016/j.phymed.2021.153837
- Yu Y, Yang X, Hu G, et al. Clinical efficacy of moluodan in the treatment of chronic atrophic gastritis: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2022;101(52):e32303. doi: 10.1097/MD.0000000000032303
- Fan Y, Dong Z, Wu Y, Wen H. Molecular mechanisms and therapeutic strategies of cGAS-STING pathway in liver disease: The quest continues. Front Immunol. 2025;16:1692365. doi: 10.3389/fimmu.2025.1692365
- Zhang WY, Wang MH, Xie C. Potential of traditional Chinese medicine in the treatment of nonalcoholic fatty liver disease: A promising future. World J Gastroenterol. 2024;30(43):4597-4601. doi: 10.3748/wjg.v30.i43.4597
- Zhu J, Guo J, Liu Z, et al. Salvianolic acid a attenuates non-alcoholic fatty liver disease by regulating the AMPK-IGFBP1 pathway. Chem Biol Interact. 2024;400:111162. doi: 10.1016/j.cbi.2024.111162
- Hassan A, Rijo P, Abuamara TMM, et al. Synergistic differential DNA demethylation activity of danshensu (Salvia miltiorrhiza) associated with different probiotics in nonalcoholic fatty liver disease. Biomedicines. 2024;12(2):279. doi: 10.3390/biomedicines12020279
- Hwang CH, Jang E, Lee JH. Pharmacological benefits and underlying mechanisms of Salvia miltiorrhiza against molecular pathology of various liver diseases: A review. Am J Chin Med. 2023;51(7):1675-1709. doi: 10.1142/S0192415X23500763
- Wang J, Hu R, Yin C, Xiao Y. Tanshinone IIA reduces palmitate-induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 liver cells. Fundam Clin Pharmacol. 2020;34(2):249-262. doi: 10.1111/fcp.12510
- Gao WY, Chen PY, Hsu HJ, Lin CY, Wu MJ, Yen JH. Tanshinone IIA downregulates lipogenic gene expression and attenuates lipid accumulation through the modulation of LXRα/SREBP1 pathway in HepG2 cells. Biomedicines. 2021;9(3):326. doi: 10.3390/biomedicines9030326
- Farese RV, Walther TC. Glycerolipid synthesis and lipid droplet formation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2023;15(5):a041246. doi: 10.1101/cshperspect.a041246
- Pi D, Liang Z, Pan J, et al. Tanshinone IIA inhibits the endoplasmic reticulum stress-induced unfolded protein response by activating the PPARα/FGF21 axis to ameliorate nonalcoholic steatohepatitis. Antioxid Basel Switz. 2024;13(9):1026. doi: 10.3390/antiox13091026
- Zhang Y, Wang J, Yang S, Kou H, Liu P. Tanshinone IIA alleviate atherosclerosis and hepatic steatosis via down-regulation of MAPKs/NF-κB signaling pathway. Int Immunopharmacol. 2025;152:114465. doi: 10.1016/j.intimp.2025.114465
- Zheng L, Li B, Yuan A, et al. TFEB activator tanshinone IIA and derivatives derived from salvia miltiorrhiza bge. Attenuate hepatic steatosis and insulin resistance. J Ethnopharmacol. 2024;335:118662. doi: 10.1016/j.jep.2024.118662
- Dai X, Feng J, Chen Y, et al. Traditional Chinese medicine in nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Chin Med. 2021;16(1):68. doi: 10.1186/s13020-021-00469-4
- Li S, An J, Zhang T, et al. Integration of network pharmacology, UHPLC-Q exactive orbitrap HRMS technique and metabolomics to elucidate the active ingredients and mechanisms of compound danshen pills in treating hypercholesterolemic rats. J Ethnopharmacol. 2025;336:118759. doi: 10.1016/j.jep.2024.118759
- You L, Wang T, Li W, et al. Xiaozhi formula attenuates non-alcoholic fatty liver disease by regulating lipid metabolism via activation of AMPK and PPAR pathways. J Ethnopharmacol. 2024;329:118165. doi: 10.1016/j.jep.2024.118165
- Wang H, Tan H, Zhan W, et al. Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs. J Ethnopharmacol. 2021;274:114056. doi: 10.1016/j.jep.2021.114056
- Liu Z, Yan F, Zhang H, et al. Zingerone attenuates concanavalin a-induced acute liver injury by restricting inflammatory responses. Int Immunopharmacol. 2024;142(Pt B):113198. doi: 10.1016/j.intimp.2024.113198
- Bi Z, Wang Y, Zhang W. A comprehensive review of tanshinone IIA and its derivatives in fibrosis treatment. Biomed Pharmacother Biomedecine Pharmacother. 2021;137:111404. doi: 10.1016/j.biopha.2021.111404
- Li Q, Huang D, Liao W, et al. Tanshinone IIA regulates CCl4 induced liver fibrosis in C57BL/6J mice via the PI3K/akt and Nrf2/HO-1 signaling pathways. J Biochem Mol Toxicol. 2024;38(2):e23648. doi: 10.1002/jbt.23648
- Deng Y, Lu L, Zhu D, et al. MafG/MYH9-LCN2 axis promotes liver fibrosis through inhibiting ferroptosis of hepatic stellate cells. Cell Death Differ. 2024;31(9):1127-1139. doi: 10.1038/s41418-024-01322-5
- Liao W, Wu F, Hao Z, et al. Tanshinone IIA alleviates liver fibrosis by suppressing hepatic stellate cell proliferation via ERK/cyclin D1/p-Smad3L signaling axis. Iran J Basic Med Sci. 2025;28(5):638-646. doi: 10.22038/ijbms.2025.83092.17962
- Ashour AA, El-Kamel AH, Abdelmonsif DA, Khalifa HM, Ramadan AA. Modified lipid nanocapsules for targeted tanshinone IIA delivery in liver fibrosis. Int J Nanomedicine. 2021;16:8013-8033. doi: 10.2147/IJN.S331690
- Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Des Devel Ther. 2020;14:4735-4748. doi: 10.2147/DDDT.S266911
- Shi MJ, Yan XL, Dong BS, Yang WN, Su SB, Zhang H. A network pharmacology approach to investigating the mechanism of tanshinone IIA for the treatment of liver fibrosis. J Ethnopharmacol. 2020;253:112689. doi: 10.1016/j.jep.2020.112689
- You J, Huang Y, Jiang C, et al. EMP1 + hepatic stellate cells drive hepatic fibrosis progression to hepatocellular carcinoma and predict prognosis. J Transl Med. 2025;24:29. doi: 10.1186/s12967-025-07454-7
- Qi J, Ping D, Sun X, Huang K, Peng Y, Liu C. A herbal product inhibits carbon tetrachloride-induced liver fibrosis by suppressing the epidermal growth factor receptor signaling pathway. J Ethnopharmacol. 2023;311:116419. doi: 10.1016/j.jep.2023.116419
- Zeng R, Guo Y, Qi J, et al. Dantao formula alleviates hepatic fibrosis and portal hypertension via modulation of the cAMP/PKA/ROCK signaling pathway in hepatic stellate cells. J Ethnopharmacol. 2026;355(Pt A):120650. doi: 10.1016/j.jep.2025.120650
- Hong B, Wang Y, Hou Y, Liu R, Li W. Study on the mechanism of anti-hepatic fibrosis of glycyrrhiza uralensis-salvia miltiorrhiza prescription based on serum and urine metabolomics and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1209:123416. doi: 10.1016/j.jchromb.2022.123416
- Hu TT, Jiang XY, Guan M. [Analysis of clinical characteristics and risk factors for recurrence of combined EB virus infection in patients with inflammatory bowel disease treated with biological agents]. Zhonghua Yu Fang Yi Xue Za Zhi. 2024;58(11):1711-1719. doi: 10.3760/cma.j.cn112150-20240620-00486
- Wang Z, Li B, Bao L, et al. Fusobacterium nucleatum aggravates intestinal barrier impairment and colitis through IL-8 induced neutrophil chemotaxis by activating epithelial cells. J Inflamm Res. 2024;17:8407-8420. doi:10.2147/JIR.S470376
- Hu CH, Chen Y, Jin TY, et al. A derivative of tanshinone IIA and salviadione, 15a, inhibits inflammation and alleviates DSS-induced colitis in mice by direct binding and inhibition of RIPK2. Acta Pharmacol Sin. 2024. doi: 10.1038/s41401-024-01399-1
- Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi: 10.1038/s41392-020-00312-6
- Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 2024;9(1):53. doi: 10.1038/s41392-024-01757-9
- Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and crohn’s disease. World J Gastroenterol. 2020;26(28):4055-4075. doi: 10.3748/wjg.v26.i28.4055
- Zhu G, Wu X, Jiang S, et al. The application of omics techniques to evaluate the effects of tanshinone IIA on dextran sodium sulfate induced ulcerative colitis. Mol Omics. 2022;18(7):666-676. doi: 10.1039/d2mo00074a
- Zhang W, Xiong P, Liu J, et al. A systematic review and meta-analysis of danshen combined with mesalazine for the treatment of ulcerative colitis. Front Pharmacol. 2024;15:1334474. doi: 10.3389/fphar.2024.1334474
- Zhang M, Su Y, Gao Q, et al. Efficacy and safety of Chinese patent medicine combined with 5-aminosalicylic acid for patients with ulcerative colitis: A network meta-analysis of randomized controlled trials. Heliyon. 2024;10(10):e31182. doi: 10.1016/j.heliyon.2024.e31182
- Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer. 2022;21(1):208. doi: 10.1186/s12943-022-01670-1
- Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol. 2021;101(Pt B):108374. doi: 10.1016/j.intimp.2021.108374
- Li Q, He G, Yu Y, Li X, Peng X, Yang L. Exosome crosstalk between cancer stem cells and tumor microenvironment: Cancer progression and therapeutic strategies. Stem Cell Res Ther. 2024;15(1):449. doi: 10.1186/s13287-024-04061-z
- Luo N, Zhang K, Li X, Hu Y, Guo L. Tanshinone IIA destabilizes SLC7A11 by regulating PIAS4-mediated SUMOylation of SLC7A11 through KDM1A, and promotes ferroptosis in breast cancer. J Adv Res. 2024:S2090- 1232(24)00152-8. doi:10.1016/j.jare.2024.04.009
- Qin C, Liu S, Zhou S, et al. Tanshinone IIA promotes vascular normalization and boosts sorafenib’s anti-hepatoma activity via modulating the PI3K-AKT pathway. Front Pharmacol. 2023;14:1189532. doi: 10.3389/fphar.2023.1189532
- Vlahopoulos SA. Divergent processing of cell stress signals as the basis of cancer progression: Licensing NFκB on chromatin. Int J Mol Sci. 2024;25(16):8621. doi: 10.3390/ijms25168621
- Cao Y, Tang H, Wang G, et al. Targeting survivin with tanshinone IIA inhibits tumor growth and overcomes chemoresistance in colorectal cancer. Cell Death Discov. 2023;9(1):1-12. doi: 10.1038/s41420-023-01622-8
- Jiang Y, Bi Y, Zhou L, Zheng S, Jian T, Chen J. Tanshinone IIA inhibits proliferation and migration by downregulation of the PI3K/akt pathway in small cell lung cancer cells. BMC Complement Med Ther. 2024;24(1):68. doi: 10.1186/s12906-024-04363-y
- Tang N, Wang Y, Miao J, et al. Potential pharmacological mechanisms of tanshinone IIA in the treatment of human neuroblastoma based on network pharmacological and molecular docking Technology. Front Pharmacol. 2024;15:1363415. doi: 10.3389/fphar.2024.1363415
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660
- Eom SS, Ryu KW, Han HS, Kong SH. A comprehensive and comparative review of global gastric cancer treatment guidelines: 2024 update. J Gastric Cancer. 2025;25(1):153-176. doi: 10.5230/jgc.2025.25.e10
- Naz I, Merarchi M, Ramchandani S, et al. An overview of the anti-cancer actions of tanshinones, derived from Salvia miltiorrhiza (Danshen). Explor Target Anti-Tumor Ther. 2020;1(3):153-170. doi: 10.37349/etat.2020.00010
- Ahmad I, Hoque M, Alam SSM, Zughaibi TA, Tabrez S. Curcumin and plumbagin synergistically target the PI3K/ akt/mTOR pathway: A prospective role in cancer treatment. Int J Mol Sci. 2023;24(7):6651. doi: 10.3390/ijms24076651
- Umekita S, Kiyozawa D, Honma H, et al. Clinicopathological significance of JAK2, STAT3, and STAT4 expression in patients with gastric solid-type poorly differentiated adenocarcinoma: A retrospective study. Gastric Cancer. 2025;28:455-464. doi: 10.1007/s10120-025-01589-8
- Liu Z, Wang Y, Gao X, et al. Tanshinone IIA suppresses the proliferation of MGC803 cells by disrupting glycolysis under anaerobic conditions. Appl Biochem Biotechnol. 2025;197(6):3706-3723. doi: 10.1007/s12010-025-05205-4
- Wu WK. Effect of Salvia Combined with FOLFOX6 Chemotherapy on Postoperative Gastric Cancer and Exploring the Mechanism of Cryptotanshinone Inhibition Based on JAK2/STAT3 Signaling Pathway [in Chinese]. China: Anhui University of Chinese Medicine; 2023. doi: 10.26922/d.cnki.ganzc.2023.000501
- Jazbec G, Režen T. Circular RNA in hepatocellular carcinoma: Emerging therapeutic strategies. Front Immunol. 2025;16:1722576. doi: 10.3389/fimmu.2025.1722576
- Niu C, Zhang J, Okolo PI 3rd. Therapeutic potential of natural triterpenoids in liver cancer. Med Oncol. 2025;43(2):87. doi: 10.1007/s12032-025-03155-9
- Li H, Hu P, Zou Y, et al. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front Oncol. 2023;13:1071415. doi: 10.3389/fonc.2023.1071415
- Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ, Fang L. Tanshinone IIA: A review of its anticancer effects. Front Pharmacol. 2020;11:611087. doi: 10.3389/fphar.2020.611087
- Jiang T, Zhu AS, Yang CQ, et al. Cytochrome P450 2A6 is associated with macrophage polarization and is a potential biomarker for hepatocellular carcinoma. FEBS Open Bio. 2021;11(3):670-683. doi: 10.1002/2211-5463.13089
- Jiang Y, Wang X, Wang Z, et al. Tanshinone IIA restrains hepatocellular carcinoma progression by regulating METTL3-mediated m6A modification of TRIB3 mRNA. Turk J Gastroenterol. 2025;36(7):431-441. doi: 10.5152/tjg.2025.24304
- Liang EY, Huang MH, Chen YT, et al. Tanshinone IIA modulates cancer cell morphology and movement via rho GTPases-mediated actin cytoskeleton remodeling. Toxicol Appl Pharmacol. 2024;483:116839. doi: 10.1016/j.taap.2024.116839
- Liu TL, Zhang LN, Gu YY, et al. The synergistic antitumor effect of tanshinone IIA plus adriamycin on human hepatocellular carcinoma xenograft in BALB/C nude mice and their influences on cytochrome P450 CYP3A4 in vivo. Adv Med. 2020;2020:6231751. doi: 10.1155/2020/6231751
- Jiang T. Study on the Mechanism of Salvia Miltiorrhiza Combined with Arsenic Trioxide Reversing Macrophage Polarization and Treats Liver Cancer by Regulating Glycolysis [in Chinese]. China: Zhejiang Chinese Medical University; 2021. doi: 10.27465/d.cnki.gzzyc.2021.000009
- Ding W, Chen X, Yang L, et al. Combination of ShuangDan capsule and sorafenib inhibits tumor growth and angiogenesis in hepatocellular carcinoma via PI3K/akt/mTORC1 pathway. Integr Cancer Ther. 2022;21:15347354221078888. doi: 10.1177/15347354221078888
- Jalali P, Aliyari S, Etesami M, et al. GUCA2A dysregulation as a promising biomarker for accurate diagnosis and prognosis of colorectal cancer. Clin Exp Med. 2024;24(1):251. doi: 10.1007/s10238-024-01512-y
- Jin Y, Liu H, Wang Y, et al. Pathogenesis and treatment of colitis-associated colorectal cancer: Insights from traditional Chinese medicine. J Ethnopharmacol. 2024;338:119096. doi: 10.1016/j.jep.2024.119096
- Shah SC, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology. 2022;162(3):715-730.e3. doi: 10.1053/j.gastro.2021.10.035
- de Andrade-da-Costa J, de-Souza-Ferreira M, Dos Santos Touça NC, et al. Enrichment of cancer stem cell subpopulation alters the glycogene expression profile of colorectal cancer cells. Discov Oncol. 2024;15(1):647. doi: 10.1007/s12672-024-01536-6
- Davodabadi F, Sajjadi SF, Sarhadi M, et al. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol. 2023;958:176013. doi: 10.1016/j.ejphar.2023.176013
- Esmeeta A, Adhikary S, Dharshnaa V, et al. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed Pharmacother Biomedecine Pharmacother. 2022;153:113384. doi: 10.1016/j.biopha.2022.113384
- Song Q, Yang L, Han Z, et al. Tanshinone IIA inhibits epithelial-to-mesenchymal transition through hindering β-Arrestin1 mediated β-catenin signaling pathway in colorectal cancer. Front Pharmacol. 2020;11:586616. doi: 10.3389/fphar.2020.586616
- Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol. 2023;14:1282203. doi: 10.3389/fphar.2023.1282203
- Qian J, Cao Y, Zhang J, et al. Tanshinone IIA alleviates the biological characteristics of colorectal cancer via activating the ROS/JNK signaling pathway. Anticancer Agents Med Chem. 2023;23(2):227-236. doi: 10.2174/1871520622666220421093430
- Zhao H, Kai GY, Han B. Study of Danshen decoction on colon cancer based on network pharmacology and molecular docking [in Chinese]. Chin Pharmacol Bull. 2022;38(4):598-605. doi: 10.12360/CPB202107049
- Sun J, Qi X, Yang C, et al. Network pharmacology, molecular docking, and in vitro experiments reveal the role and mechanism of tanshinone IIA in colorectal cancer treatment through the PI3K/AKT pathway. Drug Des Devel Ther. 2025;19:2959-2977. doi: 10.2147/DDDT.S492033
- Dong X, Li K, Wang R, et al. Targeting Skp2 by tanshinone IIA overcomes chemoresistance in colorectal cancer. Cell Biol Toxicol. 2025;41(1):135. doi: 10.1007/s10565-025-10084-w
- Ge T, Zhang Y. Tanshinone IIA reverses oxaliplatin resistance in colorectal cancer through microRNA-30b-5p/AVEN axis. Open Med Wars Pol. 2022;17(1):1228-1240. doi: 10.1515/med-2022-0512
- Ge T, Li H, Xiang P, Yang D, Zhou J, Zhang Y. Tanshinone IIA induces ferroptosis in colorectal cancer cells through the suppression of SLC7A11 expression via the PI3K/AKT/ mTOR pathway. Eur J Med Res. 2025;30(1):576. doi: 10.1186/s40001-025-02842-7
- Zhang TB, Peng FY, Wu X, et al. Effects of Qifang Weitong granule on proliferation and apoptosis of human colon cancerresistant cell line Caco-2 [in Chinese]. J Chin Med. 2020;40(12):1618-1620. doi: 10.13463/j.cnki.jlzyy.2020.12.023
- Liu G, Huang K, Lin B, et al. IKZF1 promotes pyroptosis and prevents M2 macrophage polarization by inhibiting JAK2/ STAT5 pathway in colon cancer. Biochim Biophys Acta Mol Basis Dis. 2025;1871(3):167690. doi: 10.1016/j.bbadis.2025.167690
- Yang L, Huang X, Wang Z, et al. Research progress on the pharmacological properties of active ingredients from Salvia miltiorrhiza: A review. Phytomedicine. 2025;148:157272. doi: 10.1016/j.phymed.2025.157272
- Ren T, Wang J, Ma Y, et al. Preparation of pH-responsive tanshinone IIA-loaded calcium alginate nanoparticles and their anticancer mechanisms. Pharmaceutics. 2025;17(1):66. doi: 10.3390/pharmaceutics17010066
- Zhong C, Lin Z, Ke L, et al. Recent research progress (2015–2021) and perspectives on the pharmacological effects and mechanisms of tanshinone IIA. Front Pharmacol. 2021;12:778847. doi: 10.3389/fphar.2021.778847
- Wang D, Yu W, Cao L, et al. Comparative pharmacokinetics and tissue distribution of cryptotanshinone, tanshinone IIA, dihydrotanshinone I, and tanshinone I after oral administration of pure tanshinones and liposoluble extract of Salvia miltiorrhiza to rats. Biopharm Drug Dispos. 2020;41(1-2):54-63. doi: 10.1002/bdd.2213
- Shi B, Li Q, Feng Y, et al. Pharmacokinetics of 13 active components in a rat model of middle cerebral artery occlusion after intravenous injection of radix salviae miltiorrhizae-lignum Dalbergiae odoriferae prescription. J Sep Sci. 2020;43(2):531-546. doi: 10.1002/jssc.201900748
- Zhang J, Liu SL, Wang H, et al. The effects of borneol on the pharmacokinetics and brain distribution of tanshinone IIA, salvianolic acid B and ginsenoside Rg1 in fufang danshen preparation in rats. Chin J Nat Med. 2021;19(2):153-160. doi: 10.1016/S1875-5364(21)60016-X
- Lan T, Yu D, Zhao Q, Qu C, Wu Q. Ethnomedicine, phytochemistry, pharmacology, pharmacokinetics, and clinical application of Salvia miltiorrhiza bunge (Lamiaceae): A comprehensive review. J Ethnopharmacol. 2025;350:120032. doi: 10.1016/j.jep.2025.120032
- Li M, Li H, Liu H, Lai X, Xing W. Efficacy and safety of eight types Salvia miltiorrhiza injections in the treatment of unstable angina pectoris: A network meta-analysis. Front Pharmacol. 2022;13:972738. doi: 10.3389/fphar.2022.972738
- Mao S, Wang L, Zhao X, et al. Efficacy of sodium tanshinone IIA sulfonate in patients with non-ST elevation acute coronary syndrome undergoing percutaneous coronary intervention: Results from a multicentre, controlled, randomized trial. Cardiovasc Drugs Ther. 2021;35(2):321-329. doi: 10.1007/s10557-020-07077-8
- Hu X, Zhang J, Deng L, Hu H, Hu J, Zheng G. Galactose-modified PH-sensitive niosomes for controlled release and hepatocellular carcinoma target delivery of tanshinone IIA. AAPS PharmSciTech. 2021;22(3):96. doi: 10.1208/s12249-021-01973-4
- Cai C, Liu K, Yang D, et al. The nanocrystal-loaded liposome of tanshinone IIA with high drug loading and stability towards efficient liver fibrosis reversion. Nanomedicine Nanotechnol Biol Med. 2025;63:102797. doi: 10.1016/j.nano.2024.102797
- Sun J, Xu Z, Hou Y, et al. Hierarchically structured microcapsules for oral delivery of emodin and tanshinone IIA to treat renal fibrosis. Int J Pharm. 2022;616:121490. doi: 10.1016/j.ijpharm.2022.121490
- Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol. 2020;20(11):669-679. doi: 10.1038/s41577-020-0300-y
- Shao L, Sun C, Lu W, et al. Effects of borneol on the release of compound danshen colon-specific osmotic pump capsule in vitro and pharmacokinetics study in beagle dogs. AAPS PharmSciTech. 2020;21(8):316. doi: 10.1208/s12249-020-01840-8
- Zhang S, Lei J, Hu X, et al. Metabolic enzyme-mediated pharmacokinetic and pharmacodynamic interactions between Danshen Yin and clopidogrel in normal and acute myocardial infarction rats. J Ethnopharmacol. 2026;355(Pt B):120733. doi: 10.1016/j.jep.2025.120733
