Identification and validation of relevant diagnostic biomarkers for osteoporosis by Weighted Gene Co-expression Network Analysis and machine learning

Introduction: Osteoporosis (OP) is a systemic metabolic bone disease characterized by complex pathogenesis and high prevalence. Current diagnostic and therapeutic approaches have limited effectiveness, and new biomarkers are needed to improve the treatment and diagnosis of OP.
Objective: The present study aimed to identify novel diagnostic biomarkers for OP through integrated bioinformatics analysis.
Methods: We performed an integrative bioinformatics analysis combining Weighted Gene Co-expression Network Analysis and machine learning on two Gene Expression Omnibus datasets (GSE35958, GSE35956). Differentially expressed genes (DEGs) were identified using “limma” package of R software, followed by module construction and key gene screening via Least Absolute Shrinkage and Selection Operator (LASSO) regression. Functional enrichment, immune infiltration, and drug prediction analyses were conducted to explore biological mechanisms and therapeutic potential.
Results: Differential expression analysis identified 1,020 DEGs, from which 10 co-expression modules were constructed. The blue module demonstrated the strongest correlation with OP (r = 0.99, p<0.0001). LASSO regression analysis prioritized seven candidate genes (LOC286177, nucleobindin 1 [NUCB1], peroxisomal biogenesis factor 19 [PEX19], metastasis associated 1 [MTA1], DRA aassociated protein 1 [DRAP1], protocadherin gamma A1 [PCDHGA1], and pre-mRNA processing factor 39 [PRPF39]), with subsequent validation confirming NUCB1, PEX19, MTA1, DRAP1, and PCDHGA1 as robust diagnostic biomarkers (Area under the curve > 0.85). Functional enrichment implicated these genes in endoplasmic reticulum stress, Wnt/β-catenin signaling, and immune regulatory pathways. Immune profiling further revealed significant perturbations in T-cell and macrophage populations in OP. The Coremine Medical database was leveraged to predict potential therapeutic agents, including both small-molecule and phytochemical candidates.
Conclusion: The present study identified NUCB1, PEX19, MTA1, DRAP1, and PCDHGA1 as promising OP diagnostic markers and explored their roles in bone metabolism. The findings offer insights for early diagnosis and targeted therapy but require further clinical validation.
- Gómez O, Talero AP, Zanchetta MB, et al. Diagnostic, treatment, and follow-up of osteoporosis-position statement of the Latin American federation of endocrinology. Arch Osteoporos. 2021;16(1):114. doi: 10.1007/s11657-021-00974-x
- Gao S, Zhao Y. Quality of life in postmenopausal women with osteoporosis: A systematic review and meta-analysis. Qual Life Res. 2023;32(6):1551-1565. doi: 10.1007/s11136-022-03281-1
- Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364-376. doi: 10.1016/s0140-6736(18)32112-3
- Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull. 2020;133(1):105-117. doi: 10.1093/bmb/ldaa005
- Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. T-cell mediated inflammation in postmenopausal osteoporosis. Front Immunol. 2021;12:687551. doi: 10.3389/fimmu.2021.687551
- Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14-21. doi: 10.1016/j.semcdb.2021.05.014
- Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: A new candidate in the pathogenesis of osteoporosis. PLoS One. 2012;7(9):e44552. doi: 10.1371/journal.pone.0044552
- Management of osteoporosis in postmenopausal women: The 2021 position statement of The North American menopause society. Menopause. 2021;28(9):973-997. doi: 10.1097/gme.0000000000001831
- Reid IR. Vitamin D effect on bone mineral density and fractures. Endocrinol Metab Clin North Am. 2017;46(4):935-945. doi: 10.1016/j.ecl.2017.07.005
- Weaver CM, Gordon CM, Janz KF, et al. The national osteoporosis foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281-1386. doi: 10.1007/s00198-015-3440-3
- LeBoff MS, Greenspan SL, Insogna KL, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049-2102. doi: 10.1007/s00198-021-05900-y
- Johnston CB, Dagar M. Osteoporosis in older adults. Med Clin North Am. 2020;104(5):873-884. doi: 10.1016/j.mcna.2020.06.004
- Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017;5(11):908-923. doi: 10.1016/s2213-8587(17)30184-5
- Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: Mechanism, molecular target and current status on drug development. Curr Med Chem. 2021;28(8):1489-1507. doi: 10.2174/0929867327666200330142432
- Lo HJ, Tsai CH, Huang TW. Apoptosis-associated genetic mechanisms in the transition from rheumatoid arthritis to osteoporosis: A bioinformatics and functional analysis approach. APL Bioeng. 2024;8(4):046107. doi: 10.1063/5.0233961
- Xu M, Zhou H, Hu P, et al. Identification and validation of immune and oxidative stress-related diagnostic markers for diabetic nephropathy by WGCNA and machine learning. Front Immunol. 2023;14:1084531. doi: 10.3389/fimmu.2023.1084531
- Jiang F, Zhou H, Shen H. Identification of critical biomarkers and immune infiltration in rheumatoid arthritis based on WGCNA and LASSO algorithm. Front Immunol. 2022;13:925695. doi: 10.3389/fimmu.2022.925695
- Wang T, Dai L, Shen S, et al. Comprehensive molecular analyses of a macrophage-related gene signature with regard to prognosis, immune features, and biomarkers for immunotherapy in hepatocellular carcinoma based on WGCNA and the LASSO algorithm. Front Immunol. 2022;13:843408. doi: 10.3389/fimmu.2022.843408
- Liu F, Huang Y, Liu F, Wang H. Identification of immune-related genes in diagnosing atherosclerosis with rheumatoid arthritis through bioinformatics analysis and machine learning. Front Immunol. 2023;14:1126647. doi: 10.3389/fimmu.2023.1126647
- Carey JJ, Chih-Hsing Wu P, Bergin D. Risk assessment tools for osteoporosis and fractures in 2022. Best Pract Res Clin Rheumatol. 2022;36(3):101775. doi: 10.1016/j.berh.2022.101775
- Tulke S, Williams P, Hellysaz A, Ilegems E, Wendel M, Broberger C. Nucleobindin 1 (NUCB1) is a golgi-resident marker of neurons. Neuroscience. 2016;314:179-188. doi: 10.1016/j.neuroscience.2015.11.062
- Kapoor N, Gupta R, Menon ST, Folta-Stogniew E, Raleigh DP, Sakmar TP. Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. J Biol Chem. 2010;285(41):31647-31660. doi: 10.1074/jbc.M110.148429
- Tsukumo Y, Tomida A, Kitahara O, et al. Nucleobindin 1 controls the unfolded protein response by inhibiting ATF6 activation. J Biol Chem. 2007;282(40):29264-29272. doi: 10.1074/jbc.M705038200
- Proudfoot D. Calcium signaling and tissue calcification. Cold Spring Harb Perspect Biol. 2019;11(10):a035303. doi: 10.1101/cshperspect.a035303
- Li HJ, Goff A, Rudzinskas SA, et al. Altered estradiol-dependent cellular Ca2+ homeostasis and endoplasmic reticulum stress response in premenstrual dysphoric disorder. Mol Psychiatry. 2021;26(11):6963-6974. doi: 10.1038/s41380-021-01144-8
- Agrawal G, Shang HH, Xia ZJ, Subramani S. Functional regions of the peroxin Pex19 necessary for peroxisome biogenesis. J Biol Chem. 2017;292(27):11547-11560. doi: 10.1074/jbc.M116.774067
- Sarkar C, Lipinski MM. Role and function of peroxisomes in neuroinflammation. Cells. 2024;13(19):1655. doi: 10.3390/cells13191655
- Agidigbi TS, Kim C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci. 2019;20(14):3576. doi: 10.3390/ijms20143576
- Nandy A, Helderman RCM, Thapa S, et al. Lipolysis supports bone formation by providing osteoblasts with endogenous fatty acid substrates to maintain bioenergetic status. Bone Res. 2023;11(1):62. doi: 10.1038/s41413-023-00297-2
- Li DQ, Pakala SB, Nair SS, Eswaran J, Kumar R. Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res. 2012;72(2):387-394. doi: 10.1158/0008-5472.Can-11-2345
- Wang J, Wang CD, Zhang N, et al. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis. 2016;7(5):e2221. doi: 10.1038/cddis.2016.112
- Lu Y, Wei C, Xi Z. Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway. In Vitro Cell Dev Biol Anim. 2014;50(9):840-850. doi: 10.1007/s11626-014-9779-5
- Gao Y, Chen N, Fu Z, Zhang Q. Progress of wnt signaling pathway in osteoporosis. Biomolecules. 2023;13(3):483. doi: 10.3390/biom13030483
- Huang MY, Hu SY, Dong J, et al. The DRAP1/DR1 repressor complex increases mTOR activity to promote progression and confer everolimus sensitivity in triple-negative breast cancer. Cancer Res. 2024;84(16):2660-2673. doi: 10.1158/0008-5472.Can-23-2781
- Wang S, Deng Z, Ma Y, et al. The role of autophagy and mitophagy in bone metabolic disorders. Int J Biol Sci. 2020;16(14):2675-2691. doi: 10.7150/ijbs.46627
- Wu Q, Maniatis T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell. 1999;97(6):779-790. doi: 10.1016/s0092-8674(00)80789-8
- Guan M, Pan D, Zhang M, Leng X, Yao B. The aqueous extract of eucommia leaves promotes proliferation, differentiation, and mineralization of osteoblast-like MC3T3-E1 cells. Evid Based Complement Alternat Med. 2021;2021:3641317. doi: 10.1155/2021/3641317
- Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491-501. doi: 10.1038/ng.2249