AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025210206
REVIEW ARTICLE

Sepsis-induced liver dysfunction: Impact on lipid metabolism and pathophysiology

Ting Ni1† Lichao Sun1† Moath Refat2 Fawze Alnadari3 Malek Alwah1 Salem Baldi4 Maged Al-Mogahed5*
Show Less
1 Department of Emergency, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
2 Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
3 Research and Development Center of Jiangsu Tianmeijian Nature Bioengineering Co., Ltd., Nanjing, China
4 Department of Medical Laboratory Diagnostics, School of Medical Technology, Shaoyang University, Shaoyang, China
5 Department of Urology, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
†These authors contributed equally to this work.
Received: 21 May 2025 | Revised: 16 June 2025 | Accepted: 20 June 2025 | Published online: 3 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Despite advances in medical technology, sepsis remains a significant cause of mortality in intensive care units. The pathophysiology of sepsis is complex and involves increased activity of molecules that regulate vascular tone, including nitric oxide, hydrogen sulfide, endothelin-1, and carbon monoxide. These molecular changes contribute to the high mortality associated with sepsis. Moreover, as a systemic inflammatory response to infection, sepsis leads to reduced neutrophil levels, impairing the body’s ability to combat the disease effectively. The impact of sepsis on lipid metabolism and liver function is profound. The liver, a vital organ involved in various physiological processes, experiences enzyme production under septic conditions. Proinflammatory cytokines overload the liver during sepsis, impairing its normal functions and disrupting lipid metabolism. Altered circulating lipid levels, particularly triglycerides and cholesterol, may further exacerbate organ failure associated with sepsis. This review aims to explore the intricate relationship between sepsis, liver function, and lipid metabolism, offering a comprehensive understanding of the mechanisms behind sepsis-induced liver dysfunction and lipid abnormalities. A deeper insight into these processes may pave the way for developing effective therapeutics to counteract the detrimental consequences of sepsis. By highlighting the current knowledge gaps and elucidating the underlying mechanisms, this review seeks to contribute to improving sepsis management and patient outcomes.

Keywords
Sepsis
Liver dysfunction
Lipoprotein
Cholesterol
Küpffer cells
Cytokines
Funding
This review was supported by grants from the Jilin Province Science and Technology Agency Project (20210101350JC), the Jilin Provincial Finance Department (JLSWSRCZX2023-60), and the Beijing Gandan Foundation Fund for Artificial Liver (iGandanF-1082023-RGG025).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Bauer M, Gerlach H, Vogelmann T, Preissing F, Stiefel J, Adam D. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019-results from a systematic review and meta-analysis. Crit Care. 2020;24:239. doi: 10.1186/s13054-020-02950-2

 

  1. Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399(10325):629-655. doi: 10.1016/S0140-6736(21)02724-0

 

  1. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the global burden of disease study. Lancet. 2020;395(10219):200-211. doi: 10.1016/S0140-6736(19)32989-7

 

  1. Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020;46:1552-1562. doi: 10.1007/s00134-020-06151-x

 

  1. Markwart R, Saito H, Harder T, et al. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: A systematic review and meta-analysis. Intensive Care Med. 2020;46:1536-1551. doi: 10.1007/s00134-020-06106-2

 

  1. Salomão R, Ferreira BL, Salomão MC, Santos SS, Azevedo LCP, Brunialti MKC. Sepsis: Evolving concepts and challenges. Braz J Med Biol Res. 2019;52:e8595. doi: 10.1590/1414-431X20198595

 

  1. Li X, Wei S, Niu S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu decoction against sepsis. Comput Biol Med. 2022;144:105389. doi: 10.1016/j.compbiomed.2022.105389

 

  1. Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021;184(10):2537-2564. doi: 10.1016/j.cell.2021.04.015

 

  1. Van Der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity. 2021;54(11):2450-2464. doi: 10.1016/j.immuni.2021.10.012

 

  1. Chen J, Li X, Ge C, Min J, Wang F. The multifaceted role of ferroptosis in liver disease. Cell Death Differ. 2022;29(3):467-480. doi: 10.1038/s41418-022-00941-0

 

  1. Luo Y, Song Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci. 2021;22(21):11401. doi: 10.3390/ijms222111401

 

  1. Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: Identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021;6(1):122. doi: 10.1038/s41392-021-00512-8

 

  1. Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: From fundamental science to clinical applications. Nat Rev Mol Cell Biol. 2021;22(9):608-624. doi: 10.1038/s41580-021-00373-7

 

  1. Guo B, Dong R, Liang Y, Li M. Haemostatic materials for wound healing applications. Nat Rev Chem. 2021;5(11):773-791. doi: 10.1038/s41570-021-00323-z

 

  1. Wasyluk W, Zwolak A. Metabolic alterations in sepsis. J Clin Med. 2021;10(11):2412. doi: 10.3390/jcm10112412

 

  1. Wang C, Ma C, Gong L, et al. Macrophage polarization and its role in liver disease. Front Immunol. 2021;12:803037. doi: 10.3389/fimmu.2021.803037

 

  1. Pan S, Lv Z, Wang R, et al. Sepsis-induced brain dysfunction: Pathogenesis, diagnosis, and treatment. Oxid Med Cell Longev. 2022;2022(1):1328729. doi: 10.1155/2022/1328729

 

  1. Mandel J, Casari M, Stepanyan M, Martyanov A, Deppermann C. Beyond hemostasis: Platelet innate immune interactions and thromboinflammation. Int J Mol Sci. 2022;23:3868. doi: 10.3390/ijms23073868

 

  1. Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Sci Total Environ. 2021;757:143872. doi: 10.1016/j.scitotenv.2020.143872

 

  1. Violi F, Cammisotto V, Bartimoccia S, Pignatelli P, Carnevale R, Nocella C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat Rev Cardiol. 2023;20(1):24-37. doi: 10.1038/s41569-022-00737-2

 

  1. Rubio I, Osuchowski MF, Shankar-Hari M, et al. Current gaps in sepsis immunology: New opportunities for translational research. Lancet Infect Dis. 2019;19(12):e422-e436. doi: 10.1016/S1473-3099(19)30567-5

 

  1. Jarczak D, Kluge S, Nierhaus A. Sepsis-pathophysiology and therapeutic concepts. Front Med (Lausanne). 2021;8:628302. doi: 10.3389/fmed.2021.628302

 

  1. Molano Franco D, Arevalo-Rodriguez I, Roqué IFM, Montero Oleas NG, Nuvials X, Zamora J. Plasma interleukin-6 concentration for the diagnosis of sepsis in critically ill adults. Cochrane Database Syst Rev. 2019;4(4):CD011811. doi: 10.1002/14651858.CD011811.pub2

 

  1. Daix T, Guerin E, Tavernier E, et al. Multicentric standardized flow cytometry routine assessment of patients with sepsis to predict clinical worsening. Chest. 2018;154(3):617-627. doi: 10.1016/j.chest.2018.03.058

 

  1. Cox LE, Walstein K, Völlger L, et al. Neutrophil extracellular trap formation and nuclease activity in septic patients. BMC Anesthesiol. 2020;20:15. doi: 10.1186/s12871-019-0911-7

 

  1. Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018;14(7):417-427. doi: 10.1038/s41581-018-0005-7

 

  1. Sollberger G, Choidas A, Burn GL, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6689. doi: 10.1126/sciimmunol.aar6689

 

  1. Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: Insights into neutrophil extracellular trap (NET)-driven coagulation in infection. Front Cardiovasc Med. 2019;6:85. doi: 10.3389/fcvm.2019.00085

 

  1. Ortmann W, Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res. 2018;371:473-488. doi: 10.1007/s00441-017-2751-4

 

  1. Scozzi D, Liao F, Krupnick AS, Kreisel D, Gelman AE. The role of neutrophil extracellular traps in acute lung injury. Front Immunol. 2022;13:953195. doi: 10.3389/fimmu.2022.953195

 

  1. Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019;7:2050312119835043. doi: 10.1177/2050312119835043

 

  1. Strnad P, Tacke F, Koch A, Trautwein C. Liver - guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14(1):55-66.doi: 10.1038/nrgastro.2016.168

 

  1. Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, Francés R. Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol. 2021;18(6):411-431. doi: 10.1038/s41575-020-00411-3

 

  1. Wu DD, Wang DY, Li HM, Guo JC, Duan SF, Ji XY. Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid Med Cell Longev. 2019;2019(1):3831713. doi: 10.1155/2019/3831713

 

  1. Joffre J, Hellman J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid Redox Signal. 2021;35(15):1291-1307. doi: 10.1089/ars.2021.0027

 

  1. Zhang X, Liu H, Hashimoto K, Yuan S, Zhang J. The gut-liver axis in sepsis: Interaction mechanisms and therapeutic potential. Crit Care. 2022;26(1):213. doi: 10.1186/s13054-022-04090-1

 

  1. Chen J, Zhang S. The role of inflammation in cholestatic liver injury. J Inflamm Res. 2023;16:4527-4540. doi: 10.2147/JIR.S430730

 

  1. Zhao J, Zhang X, Li Y, et al. Interorgan communication with the liver: Novel mechanisms and therapeutic targets. Front Immunol. 2023;14:1314123. doi: 10.3389/fimmu.2023.1314123

 

  1. Xu GX, Wei S, Yu C, et al. Activation of kupffer cells in NAFLD and NASH: Mechanisms and therapeutic interventions. Front Cell Dev Biol. 2023;11:1199519. doi: 10.3389/fcell.2023.1199519

 

  1. Kraus RF, Gruber MA. Neutrophils-from bone marrow to first-line defense of the innate immune system. Front Immunol. 2021;12:767175. doi: 10.3389/fimmu.2021.767175

 

  1. Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct Target Ther. 2023;8(1):239. doi: 10.1038/s41392-023-01502-8

 

  1. Gierlikowska B, Stachura A, Gierlikowski W, Demkow U. The impact of cytokines on neutrophils’ phagocytosis and NET formation during sepsis-a review. Int J Mol Sci. 2022;23(9):5076. doi: 10.3390/ijms23095076

 

  1. Daniel M, Bedoui Y, Vagner D, et al. Pathophysiology of sepsis and genesis of septic shock: The critical role of mesenchymal stem cells (MSCs). Int J Mol Sci. 2022;23(16):9274. doi: 10.3390/ijms23169274

 

  1. Santacroce E, D’Angerio M, Ciobanu AL, et al. Advances and challenges in sepsis management: Modern tools and future directions. Cells. 2024;13(5):439. doi: 10.3390/cells13050439

 

  1. Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil Med Res. 2022;9(1):56. doi: 10.1186/s40779-022-00422-y

 

  1. Kulkarni HS, Lee JS, Bastarache JA, et al. Update on the features and measurements of experimental acute lung injury in animals: An official American thoracic society workshop report. Am J Respir Cell Mol Biol. 2022;66(2):e1-e14. doi: 10.1165/rcmb.2021-0531ST

 

  1. López-Martínez MJ, Franco-Martínez L, Martínez- Subiela S, Cerón JJ. Biomarkers of sepsis in pigs, horses and cattle: From acute phase proteins to procalcitonin. Anim Health Res Rev. 2022;23(1):82-99. doi: 10.1017/S1466252322000019

 

  1. Bouwman W, Verhaegh W, Stolpe AVD. Androgen receptor pathway activity assay for sepsis diagnosis and prediction of favorable prognosis. Front Med (Lausanne). 2021;8:767145. doi: 10.3389/fmed.2021.767145

 

  1. Nedeva C. Inflammation and cell death of the innate and adaptive immune system during sepsis. Biomolecules. 2021;11(7):1011. doi: 10.3390/biom11071011

 

  1. Jacobi J. The pathophysiology of sepsis - 2021 update: Part 2, organ dysfunction and assessment. Am J Health Syst Pharm. 2022;79(6):424-436. doi: 10.1093/ajhp/zxab393

 

  1. Martin MD, Badovinac VP, Griffith TS. CD4 T cell responses and the sepsis-induced immunoparalysis state. Front Immunol. 2020;11:548181. doi: 10.3389/fimmu.2020.01364

 

  1. Liu L, Sun B. Neutrophil pyroptosis: New perspectives on sepsis. Cell Mol Life Sci. 2019;76:2031-2042. doi: 10.1007/s00018-019-03060-1

 

  1. Lu Q, Tian X, Wu H, et al. Metabolic changes of hepatocytes in NAFLD. Front Physiol. 2021;12:710420. doi: 10.3389/fphys.2021.710420

 

  1. Gong T, Liu YT, Fan J. Exosomal mediators in sepsis and inflammatory organ injury: Unraveling the role of exosomes in intercellular crosstalk and organ dysfunction. Mil Med Res. 2024;11(1):24. doi: 10.1186/s40779-024-00527-6

 

  1. Maneta E, Aivalioti E, Tual-Chalot S, et al. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol. 2023;14:1144229. doi: 10.3389/fimmu.2023.1144229

 

  1. Ghenu MI, Dragoş D, Manea MM, Ionescu D, Negreanu L. Pathophysiology of sepsis-induced cholestasis: A review. JGH Open. 2022;6(6):378-387. doi: 10.1002/jgh3.12771

 

  1. Beyer D, Hoff J, Sommerfeld O, Zipprich A, Gaßler N, Press AT. The liver in sepsis: molecular mechanism of liver failure and their potential for clinical translation. Mol Med. 2022;28(1):84. doi: 10.1186/s10020-022-00510-8

 

  1. Vitale G, Mattiaccio A, Conti A, et al. Molecular and clinical links between drug-induced cholestasis and familial intrahepatic cholestasis. Int J Mol Sci. 2023;24(6):5823. doi: 10.3390/ijms24065823

 

  1. Laschke MW, Menger MD, Wang Y, Lindell G, Jeppsson B, Thorlacius H. Sepsis-associated cholestasis is critically dependent on P-selectin-dependent leukocyte recruitment in mice. Am J Physiol Gastrointest Liver Physiol. 2007;292(5):G1396-G1402. doi: 10.1152/ajpgi.00539.2006

 

  1. Asensio M, Ortiz-Rivero S, Morente-Carrasco A, Marin JJ. Etiopathogenesis and pathophysiology of cholestasis. Explor Digest Dis. 2022;1(2):97-117. doi: 10.37349/edd.2022.00008

 

  1. Sanz Codina M, Zeitlinger M. Biomarkers predicting tissue pharmacokinetics of antimicrobials in sepsis: A review. Clin Pharmacokinet. 2022;61(5):593-617. doi: 10.1007/s40262-021-01102-1

 

  1. Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol. 2020;89:107087. doi: 10.1016/j.intimp.2020.107087

 

  1. Pool R, Gomez H, Kellum JA. Mechanisms of organ dysfunction in sepsis. Crit Care Clin. 2018;34(1):63-80. doi: 10.1016/j.ccc.2017.08.003

 

  1. Pant A, Mackraj I, Govender T. Advances in sepsis diagnosis and management: A paradigm shift towards nanotechnology. J Biomed Sci. 2021;28:6. doi: 10.1186/s12929-020-00702-6

 

  1. Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular mechanisms of liver fibrosis. Front Pharmacol. 2021;12:671640. doi: 10.3389/fphar.2021.671640

 

  1. Yang M, Zhang C. The role of liver sinusoidal endothelial cells in cancer liver metastasis. Am J Cancer Res. 2021;11(5):1845-1860.

 

  1. Du W, Wang L. The crosstalk between liver sinusoidal endothelial cells and hepatic microenvironment in NASH related liver fibrosis. Front Immunol. 2022;13:936196. doi: 10.3389/fimmu.2022.936196

 

  1. Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol. 2018;15(9):555-567. doi: 10.1038/s41575-018-0020-y

 

  1. Mönkemöller V, Mao H, Hübner W, et al. Primary rat LSECs preserve their characteristic phenotype after cryopreservation. Sci Rep. 2018;8(1):14657. doi: 10.1038/s41598-018-32103-z

 

  1. Baiocchini A, Del Nonno F, Taibi C, et al. Liver sinusoidal endothelial cells (LSECs) modifications in patients with chronic hepatitis C. Sci Rep. 2019;9(1):8760. doi: 10.1038/s41598-019-45114-1

 

  1. Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: Effects on the liver sinusoidal milieu. J Hepatol. 2013;59(5):1094-1106. doi: 10.1016/j.jhep.2013.06.017

 

  1. Gao F, Qiu X, Wang K, et al. Targeting the hepatic microenvironment to improve ischemia/reperfusion injury: New insights into the immune and metabolic compartments. Aging Dis. 2022;13(4):1196-1214. doi: 10.14336/AD.2022.0109

 

  1. Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The endothelium as a driver of liver fibrosis and regeneration. Cells. 2020;9(4):929. doi: 10.3390/cells9040929

 

  1. Shu X, Li N, Wu Y, et al. Mechanotransduction of liver sinusoidal endothelial cells under varied mechanical stimuli. Acta Mech Sin. 2021;37:201-217. doi: 10.1007/s10409-021-01057-3

 

  1. Gao J, Zuo B, He Y. Liver sinusoidal endothelial cells as potential drivers of liver fibrosis (review). Mol Med Rep. 2024;29(3):40. doi: 10.3892/mmr.2024.13164

 

  1. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Lancet. 2018;392(10141):75-87. doi: 10.1038/nrdp.2016.45

 

  1. Giamarellos-Bourboulis EJ, Aschenbrenner AC, Bauer M, et al. The pathophysiology of sepsis and precision-medicine-based immunotherapy. Nat Immunol. 2024;25(1):19-28. doi: 10.1038/s41590-023-01660-5

 

  1. Zielińska M, Albrecht J, Popek M. Dysregulation of astrocytic glutamine transport in acute hyperammonemic brain edema. Front Neurosci. 2022;16:874750. doi: 10.3389/fnins.2022.874750

 

  1. Zanetto A, Northup P, Roberts L, Senzolo M. Haemostasis in cirrhosis: Understanding destabilising factors during acute decompensation. J Hepatol. 2023;78(5):1037-1047. doi: 10.1016/j.jhep.2023.01.010

 

  1. Kobashi H, Toshimori J, Yamamoto K. Sepsis-associated liver injury: Incidence, classification and the clinical significance. Hepatol Res. 2013;43(3):255-266. doi: 10.1111/j.1872-034X.2012.01069.x

 

  1. Kluge M, Tacke F. Liver impairment in critical illness and sepsis: The dawn of new biomarkers? Ann Transl Med. 2019;7(Suppl 8):S258. doi: 10.21037/atm.2019.12.79

 

  1. Taylor R, Zhang C, George D, et al. Low circulatory levels of total cholesterol, HDL-C and LDL-C are associated with death of patients with sepsis and critical illness: Systematic review, meta-analysis, and perspective of observational studies. EBioMedicine. 2024;100:104981. doi: 10.1016/j.ebiom.2024.104981

 

  1. Kim A, Niu B, Woreta T, Chen PH. Clinical considerations of coagulopathy in acute liver failure. J Clin Transl Hepatol. 2020;8(4):407. doi: 10.14218/JCTH.2020.00058

 

  1. Font MD, Thyagarajan B, Khanna AK. Sepsis and septic shock -basics of diagnosis, pathophysiology and clinical decision making. Med Clin. 2020;104(4):573-585. doi: 10.1016/j.mcna.2020.02.011

 

  1. Kaffarnik MF, Lock JF, Vetter H, et al. Early diagnosis of sepsis-related hepatic dysfunction and its prognostic impact on survival: A prospective study with the LiMAx test. Crit Care. 2013;17:R259. doi: 10.1186/cc13089

 

  1. Feingold KR, Grunfeld C. The effect of inflammation and infection on lipids and lipoproteins. In: Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000.

 

  1. Schubert J, Lindahl B, Melhus H, et al. Low-density lipoprotein cholesterol reduction and statin intensity in myocardial infarction patients and major adverse outcomes: A Swedish nationwide cohort study. Eur Heart J. 2021;42(3):243-252. doi: 10.1093/eurheartj/ehaa1011

 

  1. Gluba-Brzozka A, Franczyk B, Rysz J. Cholesterol disturbances and the role of proper nutrition in CKD patients. Nutrients. 2019;11(11):2820. doi: 10.3390/nu11112820

 

  1. Aliu-Bejta A, Atelj A, Kurshumliu M, Dreshaj S, Baršić B. Presepsin values as markers of severity of sepsis. Int J Infect Dis. 2020;95:1-7. doi: 10.1016/j.ijid.2020.03.057

 

  1. Bergmans RS, Nikodemova M, Stull VJ, Rapp A, Malecki KM. Comparison of cricket diet with peanut-based and milk-based diets in the recovery from protein malnutrition in mice and the impact on growth, metabolism and immune function. PLoS One. 2020;15(6):e0234559. doi: 10.1371/journal.pone.0234559

 

  1. Lauwers C, De Bruyn L, Langouche L. Impact of critical illness on cholesterol and fatty acids: Insights into pathophysiology and therapeutic targets. Intensive Care Med Exp. 2023;11(1):84. doi: 10.1186/s40635-023-00570-y

 

  1. Samarah F, Srour MA, Dumaidi K. Plasma lipids and lipoproteins in sickle cell disease patients in the Northern West Bank, Palestine. BioMed Res Int. 2021;2021:6640956. doi: 10.1155/2021/6640956

 

  1. Huang HC, Tsai MH, Lee FY, et al. NAFLD aggravates septic shock due to inadequate adrenal response and 11β-HSDs dysregulation in rats. Pharmaceutics. 2020;12(5):403. doi: 10.3390/pharmaceutics12050403

 

  1. Chen S, Xiao Y, Liu Y, et al. Fish oil-based lipid emulsion alleviates parenteral nutrition-associated liver diseases and intestinal injury in piglets. J Parenter Enteral Nutr. 2022;46(3):709-720. doi: 10.1002/jpen.2229

 

  1. Anushiravani A, Khamirani HJ, Mohamadkhani A, Mani A, Dianatpour M, Malekzadeh RA. Form of metabolic-associated fatty liver disease associated with a novel LIPA variant. Arch Iran Med. 2023;26(2):86. doi: 10.34172/aim.2023.14

 

  1. Bali RS, Rajni, Watali Y, Gupta SK, Gupta G. Evaluating serum bilirubin levels in acute appendicitis and appendiceal perforation. Int J Res Med Sci. 2020;8(3):859. doi: 10.18203/2320-6012.ijrms20200559

 

  1. Esnakula AK, Liu X. Chapter seven cholestatic pattern of injury/biliary tree disease: Acute biliary obstruction and chronic cholestatic liver diseases. Pract Interpretation Liver Biopsy. 2020;1:253.

 

  1. Suzuki S, Taketazu G, Mukai T, Sakata H, Oki J. Bacteremia-induced cholestatic jaundice as a major manifestation of pneumococcal infection in a healthy toddler. J Pediatr Infect Dis. 2021;16(2):85-88. doi: 10.1055/s-0040-1721512

 

  1. Lonardo A, Ballestri S. Perspectives of nonalcoholic fatty liver disease research: A personal point of view. Explor Med. 2020;1(3):85-107. doi: 10.37349/emed.2020.00007

 

  1. Chiang JY, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol. 2020;318(3):G554-G573.doi: 10.1152/ajpgi.00223.2019

 

  1. Usui S, Zhu Q, Komori H, et al. Apple-derived extracellular vesicles modulate the expression of human intestinal bile acid transporter ASBT/SLC10A2 via downregulation of transcription factor RARα. Drug Metab Pharmacokinet. 2023;52:100512. doi: 10.1016/j.dmpk.2023.100512

 

  1. Fuchs CD, Trauner M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 2022;19(7):432-450. doi: 10.1038/s41575-021-00566-7

 

  1. Ye X, Zhang T, Han H. PPARα: A potential therapeutic target of cholestasis. Front Pharmacol. 2022;13:916866. doi: 10.3389/fphar.2022.916866

 

  1. Iqbal S, Chen PH. Passive liver congestion and hypoxic hepatitis. In: Cardio Hepatology. Netherlands: Elsevier; 2023. p. 123-132. doi: 10.1016/B978-0-12-817394-7.00016-4

 

  1. Ghosh A, Onsager C, Mason A, Arriola L, Lee W, Mubayi A. The role of oxygen intake and liver enzyme on the dynamics of damaged hepatocytes: Implications to ischaemic liver injury via a mathematical model. PLoS One. 2021;16(4):e0230833. doi: 10.1371/journal.pone.0230833

 

  1. Pabolu S, Dudekula A, Pitchumoni CS. Gastrointestinal manifestations of non-GI disorders. In: Geriatric Gastroenterology. Cham: Springer International Publishing; 2021. p. 2117-2166. doi: 10.1007/978-3-030-30192-7_86

 

  1. Shah YR, Dahiya DS, Chitagi P, Rabinowitz LG. Hyperbilirubinemia in a patient with sepsis: A diagnostic challenge. ACG Case Rep J. 2023;10(6):e01076. doi: 10.14309/crj.0000000000001076

 

  1. Leonhardt J, Dorresteijn MJ, Neugebauer S, et al. Immunosuppressive effects of circulating bile acids in human endotoxemia and septic shock: Patients with liver failure are at risk. Crit Care. 2023;27(1):372. doi: 10.1186/s13054-023-04620-5

 

  1. Kumar S. Clinical profile and predictors of in-hospital mortality in septic shock patients in a tertiary care hospital. Online J Health Allied Sci. 2023;21(4):6. doi: issue84/2022-4-6.html

 

  1. Haertel F, Nuding S, Reisberg D, et al. The prognostic value of a liver function test using indocyanine green (ICG) clearance in patients with multiple organ dysfunction syndrome (MODS). J Clin Med. 2024;13(4):1039. doi: 10.3390/jcm13041039

 

  1. Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond). 2024;138(7):435-487. doi: 10.1042/CS20230522

 

  1. Woźnica EA, Inglot M, Woźnica RK, Łysenko L. Liver dysfunction in sepsis. Adv Clin Exp Med. 2018;27(4):547-551. doi: 10.17219/acem/68363

 

  1. Kunikowska AJ, Wildgruber M, Schulte-Frohlinde E, Lahmer T, Schmid RM, Huber W. Liver function assessment using indocyanine green plasma disappearance rate in a young male with icteric leptospirosis: A case report. BMC Infect Dis. 2019;19(1):473. doi: 10.1186/s12879-019-4101-5

 

  1. Blesl A, Stadlbauer V. The gut-liver axis in cholestatic liver diseases. Nutrients. 2021;13(3):1018. doi: 10.3390/nu13031018

 

  1. Shah R, John S. Jaundice, cholestatic (cholestasis, cholestatic hepatitis). In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2018.

 

  1. Karungamye P, Rugaika A, Mtei K, Machunda R. Antibiotic resistance patterns of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolated from hospital wastewater. Appl Microbiol. 2023;3(3):867-882. doi: 10.3390/applmicrobiol3030060

 

  1. Kumar A, Leite AFV, Maekawa LS, et al. Management of E. Coli sepsis. In: E. Coli Infections-Importance of Early Diagnosis and Efficient Treatment. London: IntechOpen; 2020. doi: 10.5772/intechopen.93132

 

  1. Ainosah RH, Hagras MM, Alharthi SE, Saadah OI. The effects of ursodeoxycholic acid on sepsis-induced cholestasis management in an animal model. J Taibah Univ Med Sci. 2020;15(4):312-320. doi: 10.1016/j.jtumed.2020.04.007

 

  1. Kolaric TO, Nincevic V, Kuna L, et al. Drug-induced fatty liver disease: Pathogenesis and treatment. J Clin Transl Hepatol. 2021;9(5):731-737. doi: 10.14218/JCTH.2020.00091

 

  1. Patil PA, Zhang X. Pathologic manifestations of gastrointestinal and hepatobiliary injury in immune checkpoint inhibitor therapy. Arch Pathol Lab Med. 2021;145(5):571-582. doi: 10.5858/arpa.2020-0070-RA

 

  1. Booth AL, Merwat SN, Merwat SK, Stevenson HL. Cholangitis lenta: What hepatologists need to know. Clin Liver Dis (Hoboken). 2020;15(6):236-238. doi: 10.1002/cld.907

 

  1. Bowlus CL, Arrivé L, Bergquist A, et al. AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2023;77(2):659-702. doi: 10.1002/hep.32771

 

  1. Horvatits T, Drolz A, Trauner M, Fuhrmann V. Liver injury and failure in critical illness. Hepatology. 2019;70(6):2204-2215. doi: 10.1002/hep.30824

 

  1. Khan MAR, Afrin F, Prity FS, et al. An effective approach for early liver disease prediction and sensitivity analysis. Iran J Comput Sci. 2023;6(4):277-295. doi: 10.1007/s42044-023-00138-9

 

  1. Souissi S, Laabidi S, Mustpha NB, et al. Overlap syndrome of seronegative primary biliary cholangitis and small duct primary sclerosing cholangitis: A first case report and literature review. Future Sci OA. 2024;10(1):FSO971. doi: 10.2144/fsoa-2023-0187

 

  1. Chazouilleres O, Beuers U, Bergquist A, et al. EASL clinical practice guidelines on sclerosing cholangitis. J Hepatol. 2022;77(3):761-806. doi: 10.1016/j.jhep.2022.05.011

 

  1. Thoppil J, Mehta P, Bartels B, Sharma D, Farrar JD. Impact of norepinephrine on immunity and oxidative metabolism in sepsis. Front Immunol. 2023;14:1271098. doi: 10.3389/fimmu.2023.1271098

 

  1. Gebeyehu GM, Rashidiani S, Farkas B, et al. Unveiling the role of exosomes in the pathophysiology of sepsis: Insights into organ dysfunction and potential biomarkers. Int J Mol Sci. 2024;25(9):4898. doi: 10.3390/ijms25094898

 

  1. Chang Z, Qiu J, Wang K, et al. The relationship between co-exposure to multiple heavy metals and liver damage. J Trace Elem Med Biol. 2023;77:127128. doi: 10.1016/j.jtemb.2023.127128

 

  1. Jin XX, Fang MD, Hu LL, et al. Elevated lactate dehydrogenase predicts poor prognosis of acute ischemic stroke. PLoS One. 2022;17(10):e0275651. doi: 10.1371/journal.pone.0275651

 

  1. Da BL, Kushner T, El Halabi M, et al. Liver injury in patients hospitalized with coronavirus disease 2019 correlates with hyperinflammatory response and elevated interleukin-6. Hepatol Commun. 2021;5(2):177-188. doi: 10.1002/hep4.1631

 

  1. Stravitz RT, Lee WM. Acute liver failure. Lancet. 2019;394(10201):869-881. doi: 10.1016/S0140-6736(19)31894-X

 

  1. Brady J, Horie S, Laffey JG. Role of the adaptive immune response in sepsis. Intensive Care Med Exp. 2020;8(Suppl 1):20. doi: 10.1186/s40635-020-00309-z

 

  1. Sygitowicz G, Sitkiewicz D. Molecular mechanisms of organ damage in sepsis: An overview. Braz J Infect Dis. 2021;24:552-560. doi: 10.1016/j.bjid.2020.09.004

 

  1. Sahoo DK, Wong D, Patani A, et al. Exploring the role of antioxidants in sepsis-associated oxidative stress: A comprehensive review. Front Cel Infect Microbiol. 2024;14:1348713. doi: 10.3389/fcimb.2024.1348713

 

  1. Amunugama K, Pike DP, Ford DA. The lipid biology of sepsis. J Lipid Res. 2021;62:100090. doi: 10.1016/j.jlr.2021.100090

 

  1. Page MJ, Kell DB, Pretorius E. The role of lipopolysaccharide-induced cell signalling in chronic inflammation. Chronic Stress (Thousand Oaks). 2022;6:24705470221076390. doi: 10.1177/24705470221076

 

  1. Hakoupian M, Ferino E, Jickling GC, et al. Bacterial lipopolysaccharide is associated with stroke. Sci Rep. 2021;11(1):6570. doi: 10.1038/s41598-021-86083-8

 

  1. Von Eckardstein A, Nordestgaard BG, Remaley AT, Catapano AL. High-density lipoprotein revisited: Biological functions and clinical relevance. Eur Heart J. 2023;44(16):1394-1407. doi: 10.1093/eurheartj/ehac605

 

  1. Wu Z, Zhao W, Yin Y, et al. Separation and characterization of biomacromolecules, bionanoparticles, and biomicroparticles using flow field-flow fractionation: Current applications and prospects. TrAC Trends Anal Chem. 2023;164:117114. doi: 10.1016/j.trac.2023.117114

 

  1. Tanaka S, Couret D, Tran-Dinh A, et al. High-density lipoproteins during sepsis: From bench to bedside. Crit Care. 2020;24(1):134. doi: 10.1186/s13054-020-02860-3

 

  1. Bonaventura A, Montecucco F, Dallegri F, et al. Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc Res. 2019;115(8):1266-1285. doi: 10.1093/cvr/cvz084

 

  1. Robert J, Osto E, Von Eckardstein A. The endothelium is both a target and a barrier of HDL’s protective functions. Cells. 2021;10(5):1041. doi: 10.3390/cells10051041

 

  1. Fan Y, Chen J, Liu D, et al. HDL-S1P protects endothelial function and reduces lung injury during sepsis in vivo and in vitro. Int J Biochem Cell Biol. 2020;126:105819. doi: 10.1016/j.biocel.2020.105819

 

  1. Stadler JT, Scharnagl H, Wadsack C, Marsche G. Preeclampsia affects lipid metabolism and HDL function in mothers and their offspring. Antioxidants (Basel). 2023;12(4):795.doi: 10.3390/antiox12040795

 

  1. Machowicz R, Janka G, Wiktor-Jedrzejczak W. Similar but not the same: Differential diagnosis of HLH and sepsis. Crit Rev Oncol Hematol. 2017;114:1-12. doi: 10.1016/j.critrevonc.2017.03.023

 

  1. Prado Y, Tapia P, Eltit F, et al. Sepsis-induced coagulopathy phenotype induced by oxidized high-density lipoprotein associated with increased mortality in septic-shock patients. Antioxidants (Basel). 2023;12(3):543. doi: 10.3390/antiox12030543

 

  1. Mas-Celis F, Olea-Lopez J, Parroquin-Maldonado JA. Sepsis in trauma: A deadly complication. Arch Med Res. 2021;52(8):808-816. doi: 10.1016/j.arcmed.2021.10.007

 

  1. Trinder M, Genga KR, Kong HJ, et al. Cholesteryl ester transfer protein influences high-density lipoprotein levels and survival in sepsis. Am J Respir Crit Care Med. 2019;199(7):854-862. doi: 10.1164/rccm.201806-1157OC

 

  1. Maile MD, Sigakis MJ, Stringer KA, Jewell ES, Engoren MC. Impact of the pre-illness lipid profile on sepsis mortality. J Crit Care. 2020;57:197-202. doi: 10.1016/j.jcrc.2020.01.016

 

  1. Hofmaenner DA, Arina P, Kleyman A, et al. Association between hypocholesterolemia and mortality in critically ill patients with sepsis: A systematic review and meta-analysis. Crit Care Explor. 2023;5(2):e0860. doi: 10.1097/CCE.0000000000000860

 

  1. Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, Van Der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev. 2020;159:94-119. doi: 10.1016/j.addr.2020.10.006

 

  1. Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131. doi: 10.1038/s41392-022-00955-7

 

  1. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012;11(5):367-383. doi: 10.1038/nrd3699

 

  1. Shin D, Kim S, Lee H, et al. PCSK9 stimulates Syk, PKCδ, and NF-κB, leading to atherosclerosis progression independently of LDL receptor. Nat Commun. 2024;15(1):2789. doi: 10.1038/s41467-024-46336-2

 

  1. Gafar MA, Omolo CA, Elhassan E, Ibrahim UH, Govender T. Applications of peptides in nanosystems for diagnosing and managing bacterial sepsis. J Biomed Sci. 2024;31(1):40. doi: 10.1186/s12929-024-01029-2

 

  1. Guo L, Morin EE, Yu M, et al. Replenishing HDL with synthetic HDL has multiple protective effects against sepsis in mice. Sci Signal. 2022;15(725):eabl9322. doi: 10.1126/scisignal.abl932

 

  1. Levels JH, Pajkrt D, Schultz M, et al. Alterations in lipoprotein homeostasis during human experimental endotoxemia and clinical sepsis. Biochim Biophys Acta. 2007;1771(12):1429-1438. doi: 10.1016/j.bbalip.2007.10.001

 

  1. Guirgis FW, Black LP, DeVos E, et al. Lipid intensive drug therapy for sepsis pilot: A Bayesian phase I clinical trial. J Am Coll Emerg Physicians Open. 2020;1(6):1332-1340. doi: 10.1002/emp2.12237

 

  1. Guirgis FW, Black LP, Rosenthal MD, et al. LIPid intensive drug therapy for sepsis pilot (LIPIDS-P): Phase I/II clinical trial protocol of lipid emulsion therapy for stabilising cholesterol levels in sepsis and septic shock. BMJ Open. 2019;9(9):e029348. doi: 10.1136/bmjopen-2019-029348

 

  1. Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The endocannabinoid system: A potential target for the treatment of various diseases. Int J Mol Sci. 2021;22(17):9472. doi: 10.3390/ijms22179472

 

  1. Rahman SK, Uyama T, Hussain Z, Ueda N. Roles of endocannabinoids and endocannabinoid-like molecules in energy homeostasis and metabolic regulation: A nutritional perspective. Annu Rev Nutr. 2021;41(1):177-202. doi: 10.1146/annurev-nutr-043020-090216

 

  1. Navarrete F, García-Gutiérrez MS, Jurado-Barba R, et al. Endocannabinoid system components as potential biomarkers in psychiatry. Front Psychiatry. 2020;11:315. doi: 10.3389/fpsyt.2020.00315

 

  1. DiPatrizio NV. Endocannabinoids and the gut-brain control of food intake and obesity. Nutrients. 2021;13(4):1214. doi: 10.3390/nu13041214

 

  1. Shahbazi F, Grandi V, Banerjee A, Trant JF. Cannabinoids and cannabinoid receptors: The story so far. IScience. 2020;23(7):101301. doi: 10.1016/j.isci.2020.101301

 

  1. Dinu AR, Rogobete AF, Bratu T, et al. Cannabis sativa revisited-crosstalk between microRNA expression, inflammation, oxidative stress, and endocannabinoid response system in critically ill patients with sepsis. Cells. 2020;9(2):307. doi: 10.3390/cells9020307

 

  1. Vasincu A, Rusu RN, Ababei DC, et al. Exploring the therapeutic potential of cannabinoid receptor antagonists in inflammation, diabetes mellitus, and obesity. Biomedicines. 2023;11(6):1667. doi: 10.3390/biomedicines11061667

 

  1. Song J, Fang X, Zhou K, Bao H, Li L. Sepsis-induced cardiac dysfunction and pathogenetic mechanisms (review). Mol Med Rep. 2023;28(6):227. doi: 10.3892/mmr.2023.13114

 

  1. Van Wyngene L, Vanderhaeghen T, Timmermans S, et al. Hepatic PPARα function and lipid metabolic pathways are dysregulated in polymicrobial sepsis. EMBO Mol Med. 2020;12(2):e11319. doi: 10.15252/emmm.201911319

 

  1. Chung KP, Chen GY, Chuang TY, et al. Increased plasma acetylcarnitine in sepsis is associated with multiple organ dysfunction and mortality: A multicenter cohort study. Crit Care Med. 2019;47(2):210-218. doi: 10.1097/CCM.0000000000003517

 

  1. Komorowski M, Green A, Tatham KC, Seymour C, Antcliffe D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine. 2022;86:104394. doi: 10.1016/j.ebiom.2022.104394

 

  1. Celik IH, Hanna M, Canpolat FE, Pammi M. Diagnosis of neonatal sepsis: The past, present and future. Pediatr Res. 2022;91(2):337-350. doi: 10.1038/s41390-021-01696-z

 

  1. Bjerkhaug AU, Granslo HN, Klingenberg C. Metabolic responses in neonatal sepsis-A systematic review of human metabolomic studies. Acta Paediatr. 2021;110(8):2316-2325. doi: 10.1111/apa.15874

 

  1. Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18(6):424-434. doi: 10.1038/s41569-020-00492-2

 

  1. Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 2019;20(21):5376. doi: 10.3390/ijms20215376

 

  1. Wang J, Sun Y, Teng S, Li K. Prediction of sepsis mortality using metabolite biomarkers in the blood: A meta-analysis of death-related pathways and prospective validation. BMC Med. 2020;18(1):83. doi: 10.1186/s12916-020-01546-5

 

  1. Van Der Rijt S, Leemans JC, Florquin S, Houtkooper RH, Tammaro A. Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol. 2022;18(9):588-603. doi: 10.1038/s41581-022-00592-x

 

  1. Koutroulis I, Batabyal R, McNamara B, Ledda M, Hoptay C, Freishtat RJ. Sepsis immunometabolism: From defining sepsis to understanding how energy production affects immune response. Crit Care Explor. 2019;1(11):e0061. doi: 10.1097/CCE.0000000000000061

 

  1. Vandewalle J, Libert C. Sepsis: A failing starvation response. Trends Endocrinol Metabol. 2022;33(4):292-304. doi: 10.1016/j.tem.2022.01.006

 

  1. McBride MA, Owen AM, Stothers CL, et al. The metabolic basis of immune dysfunction following sepsis and trauma. Front Immunol. 2020;11:1043. doi: 10.3389/fimmu.2020.01043

 

  1. Addissouky TA, El Sayed IET, Ali MM, Alubiady MHS. Optical insights into fibrotic livers: Applications of near-infrared spectroscopy and machine learning. Arch Gastroenterol Res. 2024;5(1):1-10. doi: 10.33696/Gastroenterology.5.048

 

  1. Paumelle R, Haas JT, Hennuyer N, et al. Hepatic PPARα is critical in the metabolic adaptation to sepsis. J Hepatol. 2019;70(5):963-973. doi: 10.1016/j.jhep.2018.12.037

 

  1. Muniz-Santos R, Lucieri-Costa G, Almeida MAPD, et al. Lipid oxidation dysregulation: An emerging player in the pathophysiology of sepsis. Front Immunol. 2023;14:1224335. doi: 10.3389/fimmu.2023.1224335

 

  1. Han D, Fang Y, Tan X, et al. The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: An update. J Cell Mol Med. 2020;24(17):9518-9532. doi: 10.1111/jcmm.15669

 

  1. Andonovski M. The Effect of PPARb/ Activation on Soleus Contractile and Metabolic Function in the Rodent Model of Barth Syndrome. Canada: Brock University; 2024.

 

  1. Xl L, Gy Z, Guo R, Cui N. Ferroptosis in sepsis: The mechanism, the role and the therapeutic potential. Front Immunol. 2022;13:956361. doi: 10.3389/fimmu.2022.956361
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing