Targeting PI3K/AKT/mTOR signaling: A promising therapeutic approach for colorectal cancer

Colorectal cancer is characterized by high prevalence, poor clinical outcomes, and unfavorable prognosis, significantly contributing to human mortality. It is well established that phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT)/mammalian target of rapamycin (mTOR) signaling pathway plays an important role in the pathogenesis and progression of colorectal cancer. In this review, we examine the role of the PI3K/AKT/mTOR signaling pathway in a variety of cellular processes, including proliferation, autophagy, apoptosis, angiogenesis, and epithelial-mesenchymal transformation in colorectal cancer. Furthermore, the latest advancements in the research on PI3K/AKT/mTOR inhibitors are discussed, offering new insights for targeted therapy in colorectal cancer.
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660
- Wang W, Yin P, Liu YN, et al. Mortality and years of life lost of colorectal cancer in China, 2005-2020: Findings from the national mortality surveillance system. Chin Med J (Engl). 2021;134(16):1933-1940. doi: 10.1097/CM9.0000000000001625
- Zhang Y, Rumgay H, Li M, Cao S, Chen W. Nasopharyngeal cancer incidence and mortality in 185 Countries in 2020 and the projected burden in 2040: Population-based global epidemiological profiling. JMIR Public Health Surveill. 2023;9:e49968. doi: 10.2196/49968
- Zhong W, Chen L, Li X, et al. Disability-adjusted life years and the trends of the burden of colorectal cancer: A population-based study in Shanghai, China during 2002 to 2016. Chin Med J (Engl). 2022;135(24):2950-2955. doi: 10.1097/CM9.0000000000002064
- Ionescu VA, Gheorghe G, Bacalbasa N, Chiotoroiu AL, Diaconu C. Colorectal cancer: From risk factors to oncogenesis. Medicina (Kaunas). 2023;59(9):1646. doi: 10.3390/medicina59091646
- Gausman V, Dornblaser D, Anand S, et al. Risk factors associated with early-onset colorectal cancer. Clin Gastroenterol Hepatol. 2020;18(12):2752-2759.e2. doi: 10.1016/j.cgh.2019.10.009
- Saraiva MR, Rosa I, Claro I. Early-onset colorectal cancer: A review of current knowledge. World J Gastroenterol. 2023;29(8):1289-1303. doi: 10.3748/wjg.v29.i8.1289
- Bener A, Öztürk AE, Dasdelen MF, et al. Colorectal cancer and associated genetic, lifestyle, cigarette, nargileh-hookah use and alcohol consumption risk factors: A comprehensive case-control study. Oncol Rev. 2024;18:1449709. doi: 10.3389/or.2024.1449709
- Barna R, Dema A, Jurescu A, et al. The relevance of sex and age as non-modifiable risk factors in relation to clinical-pathological parameters in colorectal cancer. Life (Basel). 2025;15(2):156. doi: 10.3390/life15020156
- Zhang Y, Lu A, Kang HA. Modifiable and non-modifiable risk factors of early-onset colorectal cancer: National health interview survey analysis. Cancer Epidemiol. 2024;93:102682. doi: 10.1016/j.canep.2024.102682
- Puzzono M, Mannucci A, Grannò S, et al. The role of diet and lifestyle in early-onset colorectal cancer: A systematic review. Cancers (Basel). 2021;13(23):5933. doi: 10.3390/cancers13235933
- Sivananthan A, Glover B, Ayaru L, Patel K, Darzi A, Patel N. The evolution of lower gastrointestinal endoscopy: Where are we now? Ther Adv Gastrointest Endosc. 2020;13:2631774520979591. doi: 10.1177/2631774520979591
- Tringali A, Costa D, Fugazza A, et al. Endoscopic management of difficult common bile duct stones: Where are we now? A comprehensive review. World J Gastroenterol. 2021;27(44):7597-7611. doi: 10.3748/wjg.v27.i44.7597
- Nakanishi R, Yamaguchi T, Akiyoshi T, et al. Laparoscopic and robotic lateral lymph node dissection for rectal cancer. Surg Today. 2020;50(3):209-216. doi: 10.1007/s00595-020-01958-z
- Grosek J, Ales Kosir J, Sever P, Erculj V, Tomazic A. Robotic versus laparoscopic surgery for colorectal cancer: A case-control study. Radiol Oncol. 2021;55(4):433-438. doi: 10.2478/raon-2021-0026
- Lichtenstern CR, Ngu RK, Shalapour S, Karin M. Immunotherapy, inflammation and colorectal cancer. Cells. 2020;9(3):618. doi: 10.3390/cells9030618
- Sakata S, Larson DW. Targeted therapy for colorectal cancer. Surg Oncol Clin N Am. 2022;31(2):255-264. doi: 10.1016/j.soc.2021.11.006
- Zhong J, Ding S, Zhang X, et al. To investigate the occurrence and development of colorectal cancer based on the PI3K/ AKT/mTOR signaling pathway. Front Biosci (Landmark Ed). 2023;28(2):37. doi: 10.31083/j.fbl2802037
- Stefani C, Miricescu D, Stanescu-Spinu II, et al. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 2021;22(19):10260. doi: 10.3390/ijms221910260
- Mousavikia SN, Darvish L, Firouzjaei AA, Toossi MTB, Azimian H. PI3K/AKT/mTOR targeting in colorectal cancer radiotherapy: A systematic review. J Gastrointestinal Cancer. 2025;56(1):52. doi: 10.1007/s12029-024-01160-1
- Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: More than just a road to PKB. Biochem J. 2000;346 Pt 3(Pt 3):561-576.
- Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008;8(3):187-198. doi: 10.2174/156800908784293659
- Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098-1101. doi: 10.1126/science.1106148
- Nguyen Huu T, Park J, Zhang Y, et al. Redox regulation of PTEN by peroxiredoxins. Antioxidants (Basel). 2021;10(2):302. doi: 10.3390/antiox10020302
- Liu A, Zhu Y, Chen W, Merlino G, Yu Y. PTEN dual lipid- and protein-phosphatase function in tumor progression. Cancers (Basel). 2022;14(15):3666. doi: 10.3390/cancers14153666
- Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 2015;25(9):545-555. doi: 10.1016/j.tcb.2015.06.002
- Chen Y, Jiao D, He H, et al. Disruption of the Keap1- mTORC2 axis by cancer-derived Keap1/mLST8 mutations leads to oncogenic mTORC2-AKT activation. Redox Biol. 2023;67:102872. doi: 10.1016/j.redox.2023.102872
- Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67:11-28. doi: 10.1146/annurev-med-062913-051343
- Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7(4):261-269. doi: 10.1016/s0960-9822(06)00122-9
- Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biol. 2007;9(3):316-323. doi: 10.1038/ncb1547
- Hemmings BA, Restuccia DF. The PI3K-PKB/akt pathway. Cold Spring Harbor Perspect Biol. 2015;7(4):a026609. doi: 10.1101/cshperspect.a026609
- Du J, Gong A, Zhao X, Wang G. Pseudouridylate synthase 7 promotes cell proliferation and invasion in colon cancer through activating PI3K/AKT/mTOR signaling pathway. Dig Dis Sci. 2022;67(4):1260-1270. doi: 10.1007/s10620-021-06936-0
- Mao Y, Xie H, Shu D, Cheng L, Lan J, Pan K. Moxidectin induces autophagy arrest in colorectal cancer. Med Oncol. 2022;39(12):211. doi: 10.1007/s12032-022-01799-5
- Sanaei MJ, Baghery Saghchy Khorasani A, Pourbagheri- Sigaroodi A, Shahrokh S, Zali MR, Bashash D. The PI3K/Akt/ mTOR axis in colorectal cancer: Oncogenic alterations, non-coding RNAs, therapeutic opportunities, and the emerging role of nanoparticles. J Cell Physiol. 2022;237(3):1720-1752. doi: 10.1002/jcp.30655
- Alharbi KS, Shaikh MAJ, Almalki WH, et al. PI3K/Akt/ mTOR pathways inhibitors with potential prospects in non-small-cell lung cancer. J Environ Pathol Toxicol Oncol. 2022;41(4):85-102. doi: 10.1615/JEnvironPatholToxicolOncol.2022042281
- Deng F, Ma YX, Liang L, Zhang P, Feng J. The pro-apoptosis effect of sinomenine in renal carcinoma via inducing autophagy through inactivating PI3K/AKT/mTOR pathway. Biomed Pharmacother. 2018;97:1269-1274. doi: 10.1016/j.biopha.2017.11.064
- Rivera-Soto R, Yu Y, Dittmer DP, Damania B. Combined inhibition of akt and mTOR is effective against non-hodgkin lymphomas. Front Oncol. 2021;11:670275. doi: 10.3389/fonc.2021.670275
- Malkomes P, Lunger I, Luetticke A, et al. Selective AKT inhibition by MK-2206 represses colorectal cancer-initiating stem cells. Ann Surg Oncol. 2016;23(9):2849-2857. doi: 10.1245/s10434-016-5218-z
- Chen M, Tan AH, Li J. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/ mTOR signaling. Nutr Cancer. 2023;75(2):726-733. doi: 10.1080/01635581.2022.2139398
- Huang X, Xu X, Ke H, et al. microRNA-16-5p suppresses cell proliferation and angiogenesis in colorectal cancer by negatively regulating forkhead box K1 to block the PI3K/ Akt/mTOR pathway. Eur J Histochem. 2022;66(2):3333. doi: 10.4081/ejh.2022.3333
- Zhu LL, Shi JJ, Guo YD, et al. NUCKS1 promotes the progression of colorectal cancer via activating PI3K/AKT/ mTOR signaling pathway. Neoplasma. 2023;70(2):272-286. doi: 10.4149/neo_2023_221107N1088
- Wang H, Chen Y, Yuan Q, Chen L, Dai P, Li X. HRK inhibits colorectal cancer cells proliferation by suppressing the PI3K/ AKT/mTOR pathway. Front Oncol. 2022;12:1053510. doi: 10.3389/fonc.2022.1053510
- Cheng H, Jiang X, Zhang Q, et al. Naringin inhibits colorectal cancer cell growth by repressing the PI3K/AKT/mTOR signaling pathway. Exp Ther Med. 2020;19(6):3798-3804. doi: 10.3892/etm.2020.8649
- Jin XS, Chen LX, Ji TT, Li RZ. SERPINH1 promoted the proliferation and metastasis of colorectal cancer by activating PI3K/Akt/mTOR signaling pathway. World J Gastrointest Oncol. 2024;16(5):1890-1907. doi: 10.4251/wjgo.v16.i5.1890
- Qiao S, Li X, Yang S, Hua H, Mao C, Lu W. Investigating the PI3K/AKT/mTOR axis in buzhong yiqi decoction’s anti-colorectal cancer activity. Sci Rep. 2025;15(1):8238. doi: 10.1038/s41598-025-89018-9
- Chen Y, Qin Y, Fan T, et al. Solobacterium moorei promotes tumor progression via the Integrin α2/β1-PI3K-AKT-mTOR-C-myc signaling pathway in colorectal cancer. Int J Biol Sci. 2025;21(4):1497-1512. doi: 10.7150/ijbs.102742
- Rakesh R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis. 2022;1868(7):166400. doi: 10.1016/j.bbadis.2022.166400
- Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24(8):560-575. doi: 10.1038/s41580-023-00585-z
- Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19(1):12. doi: 10.1186/s12943-020-1138-4
- Tan XP, He Y, Huang YN, et al. Lomerizine 2HCl inhibits cell proliferation and induces protective autophagy in colorectal cancer via the PI3K/Akt/mTOR signaling pathway. MedComm. 2021;2(3):453-466. doi: 10.1002/mco2.83
- Ma Z, Lou S, Jiang Z. PHLDA2 regulates EMT and autophagy in colorectal cancer via the PI3K/AKT signaling pathway. Aging (Albany NY). 2020;12(9):7985-8000. doi: 10.18632/aging.103117
- Wang J, Liang D, Zhang XP, et al. Novel PI3K/Akt/mTOR signaling inhibitor, W922, prevents colorectal cancer growth via the regulation of autophagy. Int J Oncol. 2021;58(1):70-82. doi: 10.3892/ijo.2020.5151
- Yang C, Yaolin S, Lu W, et al. G-protein signaling modulator 1 promotes colorectal cancer metastasis by PI3K/AKT/ mTOR signaling and autophagy. Int J Biochem Cell Biol. 2023;157:106388. doi: 10.1016/j.biocel.2023.106388
- Han YH, Mun JG, Jeon HD, Kee JY, Hong SH. Betulin inhibits lung metastasis by inducing cell cycle arrest, autophagy, and apoptosis of metastatic colorectal cancer cells. Nutrients. 2019;12(1):66. doi: 10.3390/nu12010066
- Wei R, Xiao Y, Song Y, Yuan H, Luo J, Xu W. FAT4 regulates the EMT and autophagy in colorectal cancer cells in part via the PI3K-AKT signaling axis. J Exp Clin Cancer Res. 2019;38(1):112. doi: 10.1186/s13046-019-1043-0
- Zhu ML, Zhang PM, Jiang M, Yu SW, Wang L. Myricetin induces apoptosis and autophagy by inhibiting PI3K/ Akt/mTOR signalling in human colon cancer cells. BMC Complement Med Ther. 2020;20(1):209. doi: 10.1186/s12906-020-02965-w
- Cao ZX, Yang YT, Yu S, et al. Pogostone induces autophagy and apoptosis involving PI3K/Akt/mTOR axis in human colorectal carcinoma HCT116 cells. J Ethnopharmacol. 2017;202:20-27. doi: 10.1016/j.jep.2016.07.028
- Fan XJ, Wang Y, Wang L, Zhu M. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Oncol Rep. 2016;36(6):3559-3567. doi: 10.3892/or.2016.5138
- Yang L, Liu Y, Wang M, et al. Celastrus orbiculatus extract triggers apoptosis and autophagy via PI3K/Akt/mTOR inhibition in human colorectal cancer cells. Oncol Lett. 2016;12(5):3771-3778. doi: 10.3892/ol.2016.5213
- Zhang R, Yu Q, Lu W, et al. Grape seed procyanidin B2 promotes the autophagy and apoptosis in colorectal cancer cells via regulating PI3K/Akt signaling pathway. Onco Targets Ther. 2019;12:4109-4118. doi: 10.2147/ott.S195615
- Oh I, Cho H, Lee Y, Cheon M, Park D, Lee Y. Blockage of autophagy rescues the dual PI3K/mTOR inhibitor BEZ235- induced growth inhibition of colorectal cancer cells. Dev Reprod. 2016;20(1):1-10. doi: 10.12717/dr.2016.20.1.001
- Li S, Wang X, Wang G, et al. Ethyl acetate extract of Selaginella doederleinii hieron induces cell autophagic death and apoptosis in colorectal cancer via PI3K-Akt-mTOR and AMPKα- signaling pathways. Front Pharmacol. 2020;11:565090. doi: 10.3389/fphar.2020.565090
- Liu M, Zhao G, Zhang D, et al. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int J Oncol. 2018;53(3):1363-1373. doi: 10.3892/ijo.2018.4465
- Peng Y, Qiu L, Xu D, et al. M4IDP, a zoledronic acid derivative, induces G1 arrest, apoptosis and autophagy in HCT116 colon carcinoma cells via blocking PI3K/Akt/ mTOR pathway. Life Sci. 2017;185:63-72. doi: 10.1016/j.lfs.2017.07.024
- Chantree P, Martviset P, Sornchuer P, et al. Ethyl acetate extract of Halymenia durvillei induced apoptosis, autophagy, and cell cycle arrest in colorectal cancer cells. Prev Nutr Food Sci. 2023;28(1):69-78. doi: 10.3746/pnf.2023.28.1.69
- Li JK, Sun HT, Jiang XL, et al. Polyphyllin II induces protective autophagy and apoptosis via inhibiting PI3K/ AKT/mTOR and STAT3 signaling in colorectal cancer cells. Int J Mol Sci. 2022;23(19):11890. doi: 10.3390/ijms231911890
- Hu S, Yin J, Yan S, et al. Chaetocochin J, an epipolythiodioxopiperazine alkaloid, induces apoptosis and autophagy in colorectal cancer via AMPK and PI3K/AKT/ mTOR pathways. Bioorg Chem. 2021;109:104693. doi: 10.1016/j.bioorg.2021.104693
- Mahalingam D, Mita M, Sarantopoulos J, et al. Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy. 2014;10(8):1403-1414. doi: 10.4161/auto.29231
- Liu R, Zhang B, Zou S, Cui L, Lin L, Li L. Ginsenoside Rg1 induces autophagy in colorectal cancer through inhibition of the Akt/mTOR/p70S6K pathway. J Microbiol Biotechnol. 2024;34(4):774-782. doi: 10.4014/jmb.2310.10043
- Li Z, Ke H, Cai J, et al. MTHFD1 regulates autophagy to promote growth and metastasis in colorectal cancer via the PI3K-AKT-mTOR signaling pathway. Cancer Med. 2024;13(22):e70267. doi: 10.1002/cam4.70267
- Li Y, Yan W, Qin Y, Zhang L, Xiao S. The anthraquinone derivative C2 enhances oxaliplatin-induced cell death and triggers autophagy via the PI3K/AKT/mTOR pathway. Int J Mol Sci. 2024;25(12):6468. doi: 10.3390/ijms25126468
- Lin F, Zhang G, Yang X, et al. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. J Ethnopharmacol. 2023;303:115933. doi: 10.1016/j.jep.2022.115933
- Yao W, Lin Z, Shi P, et al. Delicaflavone induces ROS-mediated apoptosis and inhibits PI3K/AKT/mTOR and Ras/MEK/Erk signaling pathways in colorectal cancer cells. Biochem Pharmacol. 2020;171:113680. doi: 10.1016/j.bcp.2019.113680
- Su T, Huang L, Zhang N, et al. FGF14 functions as a tumor suppressor through inhibiting PI3K/AKT/mTOR pathway in colorectal cancer. J Cancer. 2020;11(4):819-825. doi: 10.7150/jca.36316
- Mu BX, Li Y, Ye N, et al. Understanding apoptotic induction by Sargentodoxa cuneata-Patrinia villosa herb pair via PI3K/AKT/mTOR signalling in colorectal cancer cells using network pharmacology and cellular studies. J Ethnopharmacol. 2024;319(Pt 3):117342. doi: 10.1016/j.jep.2023.117342
- Soo HC, Chung FF, Lim KH, et al. Cudraflavone C induces tumor-specific apoptosis in colorectal cancer cells through inhibition of the phosphoinositide 3-kinase (PI3K)-AKT pathway. PLoS One. 2017;12(1):e0170551. doi: 10.1371/journal.pone.0170551
- Khan N, Jajeh F, Eberhardt EL, et al. Fisetin and 5-fluorouracil: Effective combination for PIK3CA-mutant colorectal cancer. Int J Cancer. 2019;145(11):3022-3032. doi: 10.1002/ijc.32367
- Wang J, An J, Tian L, et al. KW2478 and cisplatin synergistically anti-colorectal cancer by targeting PI3K/ AKT/mTOR pathway. Anticancer Agents Med Chem. 2025;25:800-810. doi: 10.2174/0118715206356311241128075924
- González Astorga B, Salvà Ballabrera F, Aranda Aguilar E, et al. Patient profiles as an aim to optimize selection in the second line setting: The role of aflibercept. Clin Transl Oncol. 2021;23(8):1520-1528. doi: 10.1007/s12094-021-02568-y
- Pfeiffer P, Liposits G, Taarpgaard LS. Angiogenesis inhibitors for metastatic colorectal cancer. Transl Cancer Res. 2023;12(12):3241-3244. doi: 10.21037/tcr-23-1568
- Dasari A, Lonardi S, Garcia-Carbonero R, et al. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): An international, multicentre, randomised, double-blind, phase 3 study. Lancet. 2023;402(10395):41-53. doi: 10.1016/s0140-6736(23)00772-9
- Kamel R, El Morsy EM, Elsherbiny ME, Nour-Eldin M. Chrysin promotes angiogenesis in rat hindlimb ischemia: Impact on PI3K/Akt/mTOR signaling pathway and autophagy. Drug Dev Res. 2022;83(5):1226-1237. doi: 10.1002/ddr.21954
- Yang L, Dong Z, Li S, Chen T. ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression. Aging (Albany NY). 2023;15(8):2920-2936. doi: 10.18632/aging.204559
- Qin X, Liu M, Xu C, et al. ZDQ-0620, a Novel phosphatidylinositol 3-kinase inhibitor, inhibits colorectal carcinoma cell proliferation and suppresses angiogenesis by attenuating PI3K/AKT/mTOR pathway. Front Oncol. 2022;12:848952. doi: 10.3389/fonc.2022.848952
- Chen G, Tian TT, Wang FQ, et al. Chanling gao suppresses colorectal cancer via PI3K/Akt/mTOR pathway modulation and enhances quality of survival. Environ Toxicol. 2024;39(3):1107-1118. doi: 10.1002/tox.23994
- Li X, Jiang Z, Li J, et al. PRELP inhibits colorectal cancer progression by suppressing epithelial-mesenchymal transition and angiogenesis via the inactivation of the FGF1/ PI3K/AKT pathway. Apoptosis. 2025;30(1-2):16-34. doi: 10.1007/s10495-024-02015-7
- Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84. doi: 10.1038/s41580-018-0080-4
- Celesti G, Di Caro G, Bianchi P, et al. Presence of twist1- positive neoplastic cells in the stroma of chromosome-unstable colorectal tumors. Gastroenterology. 2013;145(3):647-57.e15. doi: 10.1053/j.gastro.2013.05.011
- Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 2021;22(8):e358-e368. doi: 10.1016/s1470-2045(21)00343-0
- Ni Q, Li M, Yu S. Research progress of epithelial-mesenchymal transition treatment and drug resistance in colorectal cancer. Technol Cancer Res Treat. 2022;21:15330338221081219. doi: 10.1177/15330338221081219
- Lu J, Kornmann M, Traub B. Role of epithelial to mesenchymal transition in colorectal cancer. Int J Mol Sci. 2023;24(19):14815. doi: 10.3390/ijms241914815
- Duan S, Huang W, Liu X, et al. IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/ mTOR and PI3K/AKT/FOXO1 signaling pathways. J Exp Clin Cancer Res. 2018;37(1):304. doi: 10.1186/s13046-018-0980-3
- Liao H, Zhang L, Lu S, Li W, Dong W. KIFC3 promotes proliferation, migration, and invasion in colorectal cancer via PI3K/AKT/mTOR signaling pathway. Front Genet. 2022;13:848926. doi: 10.3389/fgene.2022.848926
- Xu W, Yu M, Qin J, Luo Y, Zhong M. LACTB regulates PIK3R3 to promote autophagy and inhibit EMT and proliferation through the PI3K/AKT/mTOR signaling pathway in colorectal cancer. Cancer Manag Res. 2020;12:5181-5200. doi: 10.2147/cmar.S250661
- Markham A. Alpelisib: First global approval. Drugs. 2019;79(11):1249-1253. doi: 10.1007/s40265-019-01161-6
- Blair HA. Duvelisib: First global approval. Drugs. 2018;78(17):1847-1853. doi: 10.1007/s40265-018-1013-4
- Dhillon S, Keam SJ. Umbralisib: First approval. Drugs. 2021;81(7):857-866. doi: 10.1007/s40265-021-01504-2
- Markham A. Idelalisib: First global approval. Drugs. 2014;74(14):1701-1707. doi: 10.1007/s40265-014-0285-6
- Markham A. Copanlisib: First global approval. Drugs. 2017;77(18):2057-2062. doi: 10.1007/s40265-017-0838-6
- Leiphrakpam PD, Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int J Mol Sci. 2024;25(6):3178. doi: 10.3390/ijms25063178
- Razali NN, Raja Ali RA, Muhammad Nawawi KN, Yahaya A, Mohd Rathi ND, Mokhtar NM. Roles of phosphatidylinositol-3-kinases signaling pathway in inflammation-related cancer: Impact of rs10889677 variant and buparlisib in colitis-associated cancer. World J Gastroenterol. 2023;29(40):5543-5556. doi: 10.3748/wjg.v29.i40.5543
- Goodwin R, Jonker D, Chen E, et al. A phase Ib study of a PI3Kinase inhibitor BKM120 in combination with panitumumab in patients with KRAS wild-type advanced colorectal cancer. Invest New Drugs. 2020;38(4):1077-1084. doi: 10.1007/s10637-019-00814-3
- Rodon J, Braña I, Siu LL, et al. Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2014;32(4):670-681. doi: 10.1007/s10637-014-0082-9
- Sarker D, Ang JE, Baird R, et al. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2015;21(1):77-86. doi: 10.1158/1078-0432.Ccr-14-0947
- Hancox U, Cosulich S, Hanson L, et al. Inhibition of PI3Kβ signaling with AZD8186 inhibits growth of PTEN-deficient breast and prostate tumors alone and in combination with docetaxel. Mol Cancer Ther. 2015;14(1):48-58. doi: 10.1158/1535-7163.Mct-14-0406
- Choudhury AD, Higano CS, De Bono JS, et al. A phase I study investigating AZD8186, a potent and selective inhibitor of PI3Kβ/δ, in patients with advanced solid tumors. Clin Cancer Res. 2022;28(11):2257-2269. doi: 10.1158/1078-0432.Ccr-21-3087
- Juric D, De Bono JS, LoRusso PM, et al. A first-in-human, phase i, dose-escalation study of TAK-117, a selective PI3Kα isoform inhibitor, in patients with advanced solid malignancies. Clin Cancer Res. 2017;23(17):5015-5023. doi: 10.1158/1078-0432.Ccr-16-2888
- McRee AJ, Sanoff HK, Carlson C, Ivanova A, O’Neil BH. A phase I trial of mFOLFOX6 combined with the oral PI3K inhibitor BKM120 in patients with advanced refractory solid tumors. Invest New Drugs. 2015;33(6):1225-1231. doi: 10.1007/s10637-015-0298-3
- Agarwal E, Chaudhuri A, Leiphrakpam PD, Haferbier KL, Brattain MG, Chowdhury S. Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer. BMC Cancer. 2014;14:145. doi: 10.1186/1471-2407-14-145
- Molife LR, Yan L, Vitfell-Rasmussen J, et al. Phase 1 trial of the oral AKT inhibitor MK-2206 plus carboplatin/ paclitaxel, docetaxel, or erlotinib in patients with advanced solid tumors. J Hematol Oncol. 2014;7:1. doi: 10.1186/1756-8722-7-1
- Wisinski KB, Tevaarwerk AJ, Burkard ME, et al. Phase I study of an AKT inhibitor (MK-2206) combined with lapatinib in adult solid tumors followed by dose expansion in advanced HER2+ breast cancer. Clin Cancer Res. 2016;22(11):2659-2667. doi: 10.1158/1078-0432.Ccr-15-2365
- Do K, Speranza G, Bishop R, et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY- 142886) in patients with colorectal cancer. Invest New Drugs. 2015;33(3):720-728. doi: 10.1007/s10637-015-0212-z
- Oleksak P, Nepovimova E, Chrienova Z, Musilek K, Patocka J, Kuca K. Contemporary mTOR inhibitor scaffolds to diseases breakdown: A patent review (2015-2021). Eur J Med Chem. 2022;238:114498. doi: 10.1016/j.ejmech.2022.114498
- Chen Y, Zhou X. Research progress of mTOR inhibitors. Eur J Med Chem. 2020;208:112820. doi: 10.1016/j.ejmech.2020.112820
- Wang D, Eisen HJ. Mechanistic target of rapamycin (mTOR) inhibitors. Handb Exp Pharmacol. 2022;272:53-72. doi: 10.1007/164_2021_553
- Qiu HY, Wang PF, Zhang M. A patent review of mTOR inhibitors for cancer therapy (2011-2020). Expert Opin Ther Pat. 2021;31(11):965-975. doi: 10.1080/13543776.2021.1940137
- Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of research into mTOR inhibitors. Molecules. 2022;27(16):5295. doi: 10.3390/molecules27165295
- Yang G, Francis D, Krycer JR, et al. Dissecting the biology of mTORC1 beyond rapamycin. Sci Signal. 2021;14(701):eabe0161. doi: 10.1126/scisignal.abe0161
- Gulhati P, Bowen KA, Liu J, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 2011;71(9):3246-3256. doi: 10.1158/0008-5472.Can-10-4058
- Francipane MG, Lagasse E. Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor torin-1. Oncotarget. 2013;4(11):1948-1962. doi: 10.18632/oncotarget.1310
- Ng K, Tabernero J, Hwang J, et al. Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. Clin Cancer Res. 2013;19(14):3987-3995. doi: 10.1158/1078-0432.Ccr-13-0027
- Altomare I, Bendell JC, Bullock KE, et al. A phase II trial of bevacizumab plus everolimus for patients with refractory metastatic colorectal cancer. Oncologist. 2011;16(8):1131-1137. doi: 10.1634/theoncologist.2011-0078
- Wolpin BM, Ng K, Zhu AX, et al. Multicenter phase II study of tivozanib (AV-951) and everolimus (RAD001) for patients with refractory, metastatic colorectal cancer. Oncologist. 2013;18(4):377-378. doi: 10.1634/theoncologist.2012-0378
- Townsend A, Tebbutt N, Karapetis C, et al. Phase IB/II study of second-line therapy with panitumumab, irinotecan, and everolimus (PIE) in KRAS wild-type metastatic colorectal cancer. Clin Cancer Res. 2018;24(16):3838-3844. doi: 10.1158/1078-0432.Ccr-17-3590
- Weldon Gilcrease G, Stenehjem DD, Wade ML, et al. Phase I/II study of everolimus combined with mFOLFOX-6 and bevacizumab for first-line treatment of metastatic colorectal cancer. Invest New Drugs. 2019;37(3):482-489. doi: 10.1007/s10637-018-0645-2
- Li C, Cui JF, Chen MB, et al. The preclinical evaluation of the dual mTORC1/2 inhibitor INK-128 as a potential anti-colorectal cancer agent. Cancer Biol Ther. 2015;16(1):34-42. doi: 10.4161/15384047.2014.972274
- Fricke SL, Payne SN, Favreau PF, et al. MTORC1/2 inhibition as a therapeutic strategy for PIK3CA mutant cancers. Mol Cancer Ther. 2019;18(2):346-355. doi: 10.1158/1535-7163.Mct-18-0510
- Yu Y, Yu X, Ma J, Tong Y, Yao J. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. Int J Oncol. 2016;49(1):285-293. doi: 10.3892/ijo.2016.3507
- Helmy MW, Ghoneim AI, Katary MA, Elmahdy RK. The synergistic anti-proliferative effect of the combination of diosmin and BEZ-235 (dactolisib) on the HCT-116 colorectal cancer cell line occurs through inhibition of the PI3K/Akt/ mTOR/NF-κB axis. Mol Biol Rep. 2020;47(3):2217-2230. doi: 10.1007/s11033-020-05327-4
- Rodon J, Pérez-Fidalgo A, Krop IE, et al. Phase 1/1b dose escalation and expansion study of BEZ235, a dual PI3K/ mTOR inhibitor, in patients with advanced solid tumors including patients with advanced breast cancer. Cancer Chemother Pharmacol. 2018;82(2):285-298. doi: 10.1007/s00280-018-3610-z
- Dolly SO, Wagner AJ, Bendell JC, et al. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2016;22(12):2874-2884. doi: 10.1158/1078-0432.Ccr-15-2225
- Wainberg ZA, Alsina M, Soares HP, et al. A multi-arm phase I study of the PI3K/mTOR inhibitors PF-04691502 and gedatolisib (PF-05212384) plus irinotecan or the MEK inhibitor PD-0325901 in advanced cancer. Target Oncol. 2017;12(6):775-785. doi: 10.1007/s11523-017-0530-5
- Xie Y, Liu C, Zhang Y, et al. PKI-587 enhances radiosensitization of hepatocellular carcinoma by inhibiting the PI3K/AKT/mTOR pathways and DNA damage repair. PloS One. 2021;16(10):e0258817. doi: 10.1371/journal.pone.0258817
- Chow Z, Johnson J, Chauhan A, et al. PI3K/mTOR dual inhibitor PF-04691502 is a schedule-dependent radiosensitizer for gastroenteropancreatic neuroendocrine tumors. Cells. 2021;10(5):1261. doi: 10.3390/cells10051261
- Chen YH, Wang CW, Wei MF, et al. Maintenance BEZ235 treatment prolongs the therapeutic effect of the combination of BEZ235 and radiotherapy for colorectal cancer. Cancers (Basel). 2019;11(8):1204. doi: 10.3390/cancers11081204