AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025190175
REVIEW ARTICLE

Targeting PI3K/AKT/mTOR signaling: A promising therapeutic approach for colorectal cancer

Zhaoxia Qu1,2,3,4 Xiaozhen Pen1 Xingjun Lu1 Shunli Luo1*
Show Less
1 Department of Food Hygiene and Nutrition, College of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
2 Department of Bioengineering, College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, China
3 Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, Hunan, China
4 Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua, Hunan, China
Received: 7 May 2025 | Revised: 30 May 2025 | Accepted: 13 June 2025 | Published online: 17 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Colorectal cancer is characterized by high prevalence, poor clinical outcomes, and unfavorable prognosis, significantly contributing to human mortality. It is well established that phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT)/mammalian target of rapamycin (mTOR) signaling pathway plays an important role in the pathogenesis and progression of colorectal cancer. In this review, we examine the role of the PI3K/AKT/mTOR signaling pathway in a variety of cellular processes, including proliferation, autophagy, apoptosis, angiogenesis, and epithelial-mesenchymal transformation in colorectal cancer. Furthermore, the latest advancements in the research on PI3K/AKT/mTOR inhibitors are discussed, offering new insights for targeted therapy in colorectal cancer.

Keywords
Colorectal cancer
PI3K/AKT/mTOR signaling
Inhibitors
Targeted therapy
Research progress
Funding
The authors express gratitude for the financial support provided by the National College Student Innovation and Entrepreneurship Training Program (S202312214009), the Research Project of Hunan Provincial Department of Education (20C1336), and the Project of Hunan Provincial Natural Science Foundation of China–Regional Joint Fund (2025JJ70435).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660

 

  1. Wang W, Yin P, Liu YN, et al. Mortality and years of life lost of colorectal cancer in China, 2005-2020: Findings from the national mortality surveillance system. Chin Med J (Engl). 2021;134(16):1933-1940. doi: 10.1097/CM9.0000000000001625

 

  1. Zhang Y, Rumgay H, Li M, Cao S, Chen W. Nasopharyngeal cancer incidence and mortality in 185 Countries in 2020 and the projected burden in 2040: Population-based global epidemiological profiling. JMIR Public Health Surveill. 2023;9:e49968. doi: 10.2196/49968

 

  1. Zhong W, Chen L, Li X, et al. Disability-adjusted life years and the trends of the burden of colorectal cancer: A population-based study in Shanghai, China during 2002 to 2016. Chin Med J (Engl). 2022;135(24):2950-2955. doi: 10.1097/CM9.0000000000002064

 

  1. Ionescu VA, Gheorghe G, Bacalbasa N, Chiotoroiu AL, Diaconu C. Colorectal cancer: From risk factors to oncogenesis. Medicina (Kaunas). 2023;59(9):1646. doi: 10.3390/medicina59091646

 

  1. Gausman V, Dornblaser D, Anand S, et al. Risk factors associated with early-onset colorectal cancer. Clin Gastroenterol Hepatol. 2020;18(12):2752-2759.e2. doi: 10.1016/j.cgh.2019.10.009

 

  1. Saraiva MR, Rosa I, Claro I. Early-onset colorectal cancer: A review of current knowledge. World J Gastroenterol. 2023;29(8):1289-1303. doi: 10.3748/wjg.v29.i8.1289

 

  1. Bener A, Öztürk AE, Dasdelen MF, et al. Colorectal cancer and associated genetic, lifestyle, cigarette, nargileh-hookah use and alcohol consumption risk factors: A comprehensive case-control study. Oncol Rev. 2024;18:1449709. doi: 10.3389/or.2024.1449709

 

  1. Barna R, Dema A, Jurescu A, et al. The relevance of sex and age as non-modifiable risk factors in relation to clinical-pathological parameters in colorectal cancer. Life (Basel). 2025;15(2):156. doi: 10.3390/life15020156

 

  1. Zhang Y, Lu A, Kang HA. Modifiable and non-modifiable risk factors of early-onset colorectal cancer: National health interview survey analysis. Cancer Epidemiol. 2024;93:102682. doi: 10.1016/j.canep.2024.102682

 

  1. Puzzono M, Mannucci A, Grannò S, et al. The role of diet and lifestyle in early-onset colorectal cancer: A systematic review. Cancers (Basel). 2021;13(23):5933. doi: 10.3390/cancers13235933

 

  1. Sivananthan A, Glover B, Ayaru L, Patel K, Darzi A, Patel N. The evolution of lower gastrointestinal endoscopy: Where are we now? Ther Adv Gastrointest Endosc. 2020;13:2631774520979591. doi: 10.1177/2631774520979591

 

  1. Tringali A, Costa D, Fugazza A, et al. Endoscopic management of difficult common bile duct stones: Where are we now? A comprehensive review. World J Gastroenterol. 2021;27(44):7597-7611. doi: 10.3748/wjg.v27.i44.7597

 

  1. Nakanishi R, Yamaguchi T, Akiyoshi T, et al. Laparoscopic and robotic lateral lymph node dissection for rectal cancer. Surg Today. 2020;50(3):209-216. doi: 10.1007/s00595-020-01958-z

 

  1. Grosek J, Ales Kosir J, Sever P, Erculj V, Tomazic A. Robotic versus laparoscopic surgery for colorectal cancer: A case-control study. Radiol Oncol. 2021;55(4):433-438. doi: 10.2478/raon-2021-0026

 

  1. Lichtenstern CR, Ngu RK, Shalapour S, Karin M. Immunotherapy, inflammation and colorectal cancer. Cells. 2020;9(3):618. doi: 10.3390/cells9030618

 

  1. Sakata S, Larson DW. Targeted therapy for colorectal cancer. Surg Oncol Clin N Am. 2022;31(2):255-264. doi: 10.1016/j.soc.2021.11.006

 

  1. Zhong J, Ding S, Zhang X, et al. To investigate the occurrence and development of colorectal cancer based on the PI3K/ AKT/mTOR signaling pathway. Front Biosci (Landmark Ed). 2023;28(2):37. doi: 10.31083/j.fbl2802037

 

  1. Stefani C, Miricescu D, Stanescu-Spinu II, et al. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 2021;22(19):10260. doi: 10.3390/ijms221910260

 

  1. Mousavikia SN, Darvish L, Firouzjaei AA, Toossi MTB, Azimian H. PI3K/AKT/mTOR targeting in colorectal cancer radiotherapy: A systematic review. J Gastrointestinal Cancer. 2025;56(1):52. doi: 10.1007/s12029-024-01160-1

 

  1. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: More than just a road to PKB. Biochem J. 2000;346 Pt 3(Pt 3):561-576.

 

  1. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008;8(3):187-198. doi: 10.2174/156800908784293659

 

  1. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098-1101. doi: 10.1126/science.1106148

 

  1. Nguyen Huu T, Park J, Zhang Y, et al. Redox regulation of PTEN by peroxiredoxins. Antioxidants (Basel). 2021;10(2):302. doi: 10.3390/antiox10020302

 

  1. Liu A, Zhu Y, Chen W, Merlino G, Yu Y. PTEN dual lipid- and protein-phosphatase function in tumor progression. Cancers (Basel). 2022;14(15):3666. doi: 10.3390/cancers14153666

 

  1. Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 2015;25(9):545-555. doi: 10.1016/j.tcb.2015.06.002

 

  1. Chen Y, Jiao D, He H, et al. Disruption of the Keap1- mTORC2 axis by cancer-derived Keap1/mLST8 mutations leads to oncogenic mTORC2-AKT activation. Redox Biol. 2023;67:102872. doi: 10.1016/j.redox.2023.102872

 

  1. Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67:11-28. doi: 10.1146/annurev-med-062913-051343

 

  1. Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7(4):261-269. doi: 10.1016/s0960-9822(06)00122-9

 

  1. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biol. 2007;9(3):316-323. doi: 10.1038/ncb1547

 

  1. Hemmings BA, Restuccia DF. The PI3K-PKB/akt pathway. Cold Spring Harbor Perspect Biol. 2015;7(4):a026609. doi: 10.1101/cshperspect.a026609

 

  1. Du J, Gong A, Zhao X, Wang G. Pseudouridylate synthase 7 promotes cell proliferation and invasion in colon cancer through activating PI3K/AKT/mTOR signaling pathway. Dig Dis Sci. 2022;67(4):1260-1270. doi: 10.1007/s10620-021-06936-0

 

  1. Mao Y, Xie H, Shu D, Cheng L, Lan J, Pan K. Moxidectin induces autophagy arrest in colorectal cancer. Med Oncol. 2022;39(12):211. doi: 10.1007/s12032-022-01799-5

 

  1. Sanaei MJ, Baghery Saghchy Khorasani A, Pourbagheri- Sigaroodi A, Shahrokh S, Zali MR, Bashash D. The PI3K/Akt/ mTOR axis in colorectal cancer: Oncogenic alterations, non-coding RNAs, therapeutic opportunities, and the emerging role of nanoparticles. J Cell Physiol. 2022;237(3):1720-1752. doi: 10.1002/jcp.30655

 

  1. Alharbi KS, Shaikh MAJ, Almalki WH, et al. PI3K/Akt/ mTOR pathways inhibitors with potential prospects in non-small-cell lung cancer. J Environ Pathol Toxicol Oncol. 2022;41(4):85-102. doi: 10.1615/JEnvironPatholToxicolOncol.2022042281

 

  1. Deng F, Ma YX, Liang L, Zhang P, Feng J. The pro-apoptosis effect of sinomenine in renal carcinoma via inducing autophagy through inactivating PI3K/AKT/mTOR pathway. Biomed Pharmacother. 2018;97:1269-1274. doi: 10.1016/j.biopha.2017.11.064

 

  1. Rivera-Soto R, Yu Y, Dittmer DP, Damania B. Combined inhibition of akt and mTOR is effective against non-hodgkin lymphomas. Front Oncol. 2021;11:670275. doi: 10.3389/fonc.2021.670275

 

  1. Malkomes P, Lunger I, Luetticke A, et al. Selective AKT inhibition by MK-2206 represses colorectal cancer-initiating stem cells. Ann Surg Oncol. 2016;23(9):2849-2857. doi: 10.1245/s10434-016-5218-z

 

  1. Chen M, Tan AH, Li J. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/ mTOR signaling. Nutr Cancer. 2023;75(2):726-733. doi: 10.1080/01635581.2022.2139398

 

  1. Huang X, Xu X, Ke H, et al. microRNA-16-5p suppresses cell proliferation and angiogenesis in colorectal cancer by negatively regulating forkhead box K1 to block the PI3K/ Akt/mTOR pathway. Eur J Histochem. 2022;66(2):3333. doi: 10.4081/ejh.2022.3333

 

  1. Zhu LL, Shi JJ, Guo YD, et al. NUCKS1 promotes the progression of colorectal cancer via activating PI3K/AKT/ mTOR signaling pathway. Neoplasma. 2023;70(2):272-286. doi: 10.4149/neo_2023_221107N1088

 

  1. Wang H, Chen Y, Yuan Q, Chen L, Dai P, Li X. HRK inhibits colorectal cancer cells proliferation by suppressing the PI3K/ AKT/mTOR pathway. Front Oncol. 2022;12:1053510. doi: 10.3389/fonc.2022.1053510

 

  1. Cheng H, Jiang X, Zhang Q, et al. Naringin inhibits colorectal cancer cell growth by repressing the PI3K/AKT/mTOR signaling pathway. Exp Ther Med. 2020;19(6):3798-3804. doi: 10.3892/etm.2020.8649

 

  1. Jin XS, Chen LX, Ji TT, Li RZ. SERPINH1 promoted the proliferation and metastasis of colorectal cancer by activating PI3K/Akt/mTOR signaling pathway. World J Gastrointest Oncol. 2024;16(5):1890-1907. doi: 10.4251/wjgo.v16.i5.1890

 

  1. Qiao S, Li X, Yang S, Hua H, Mao C, Lu W. Investigating the PI3K/AKT/mTOR axis in buzhong yiqi decoction’s anti-colorectal cancer activity. Sci Rep. 2025;15(1):8238. doi: 10.1038/s41598-025-89018-9

 

  1. Chen Y, Qin Y, Fan T, et al. Solobacterium moorei promotes tumor progression via the Integrin α2/β1-PI3K-AKT-mTOR-C-myc signaling pathway in colorectal cancer. Int J Biol Sci. 2025;21(4):1497-1512. doi: 10.7150/ijbs.102742

 

  1. Rakesh R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis. 2022;1868(7):166400. doi: 10.1016/j.bbadis.2022.166400

 

  1. Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24(8):560-575. doi: 10.1038/s41580-023-00585-z

 

  1. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19(1):12. doi: 10.1186/s12943-020-1138-4

 

  1. Tan XP, He Y, Huang YN, et al. Lomerizine 2HCl inhibits cell proliferation and induces protective autophagy in colorectal cancer via the PI3K/Akt/mTOR signaling pathway. MedComm. 2021;2(3):453-466. doi: 10.1002/mco2.83

 

  1. Ma Z, Lou S, Jiang Z. PHLDA2 regulates EMT and autophagy in colorectal cancer via the PI3K/AKT signaling pathway. Aging (Albany NY). 2020;12(9):7985-8000. doi: 10.18632/aging.103117

 

  1. Wang J, Liang D, Zhang XP, et al. Novel PI3K/Akt/mTOR signaling inhibitor, W922, prevents colorectal cancer growth via the regulation of autophagy. Int J Oncol. 2021;58(1):70-82. doi: 10.3892/ijo.2020.5151

 

  1. Yang C, Yaolin S, Lu W, et al. G-protein signaling modulator 1 promotes colorectal cancer metastasis by PI3K/AKT/ mTOR signaling and autophagy. Int J Biochem Cell Biol. 2023;157:106388. doi: 10.1016/j.biocel.2023.106388

 

  1. Han YH, Mun JG, Jeon HD, Kee JY, Hong SH. Betulin inhibits lung metastasis by inducing cell cycle arrest, autophagy, and apoptosis of metastatic colorectal cancer cells. Nutrients. 2019;12(1):66. doi: 10.3390/nu12010066

 

  1. Wei R, Xiao Y, Song Y, Yuan H, Luo J, Xu W. FAT4 regulates the EMT and autophagy in colorectal cancer cells in part via the PI3K-AKT signaling axis. J Exp Clin Cancer Res. 2019;38(1):112. doi: 10.1186/s13046-019-1043-0

 

  1. Zhu ML, Zhang PM, Jiang M, Yu SW, Wang L. Myricetin induces apoptosis and autophagy by inhibiting PI3K/ Akt/mTOR signalling in human colon cancer cells. BMC Complement Med Ther. 2020;20(1):209. doi: 10.1186/s12906-020-02965-w

 

  1. Cao ZX, Yang YT, Yu S, et al. Pogostone induces autophagy and apoptosis involving PI3K/Akt/mTOR axis in human colorectal carcinoma HCT116 cells. J Ethnopharmacol. 2017;202:20-27. doi: 10.1016/j.jep.2016.07.028

 

  1. Fan XJ, Wang Y, Wang L, Zhu M. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Oncol Rep. 2016;36(6):3559-3567. doi: 10.3892/or.2016.5138

 

  1. Yang L, Liu Y, Wang M, et al. Celastrus orbiculatus extract triggers apoptosis and autophagy via PI3K/Akt/mTOR inhibition in human colorectal cancer cells. Oncol Lett. 2016;12(5):3771-3778. doi: 10.3892/ol.2016.5213

 

  1. Zhang R, Yu Q, Lu W, et al. Grape seed procyanidin B2 promotes the autophagy and apoptosis in colorectal cancer cells via regulating PI3K/Akt signaling pathway. Onco Targets Ther. 2019;12:4109-4118. doi: 10.2147/ott.S195615

 

  1. Oh I, Cho H, Lee Y, Cheon M, Park D, Lee Y. Blockage of autophagy rescues the dual PI3K/mTOR inhibitor BEZ235- induced growth inhibition of colorectal cancer cells. Dev Reprod. 2016;20(1):1-10. doi: 10.12717/dr.2016.20.1.001

 

  1. Li S, Wang X, Wang G, et al. Ethyl acetate extract of Selaginella doederleinii hieron induces cell autophagic death and apoptosis in colorectal cancer via PI3K-Akt-mTOR and AMPKα- signaling pathways. Front Pharmacol. 2020;11:565090. doi: 10.3389/fphar.2020.565090

 

  1. Liu M, Zhao G, Zhang D, et al. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int J Oncol. 2018;53(3):1363-1373. doi: 10.3892/ijo.2018.4465

 

  1. Peng Y, Qiu L, Xu D, et al. M4IDP, a zoledronic acid derivative, induces G1 arrest, apoptosis and autophagy in HCT116 colon carcinoma cells via blocking PI3K/Akt/ mTOR pathway. Life Sci. 2017;185:63-72. doi: 10.1016/j.lfs.2017.07.024

 

  1. Chantree P, Martviset P, Sornchuer P, et al. Ethyl acetate extract of Halymenia durvillei induced apoptosis, autophagy, and cell cycle arrest in colorectal cancer cells. Prev Nutr Food Sci. 2023;28(1):69-78. doi: 10.3746/pnf.2023.28.1.69

 

  1. Li JK, Sun HT, Jiang XL, et al. Polyphyllin II induces protective autophagy and apoptosis via inhibiting PI3K/ AKT/mTOR and STAT3 signaling in colorectal cancer cells. Int J Mol Sci. 2022;23(19):11890. doi: 10.3390/ijms231911890

 

  1. Hu S, Yin J, Yan S, et al. Chaetocochin J, an epipolythiodioxopiperazine alkaloid, induces apoptosis and autophagy in colorectal cancer via AMPK and PI3K/AKT/ mTOR pathways. Bioorg Chem. 2021;109:104693. doi: 10.1016/j.bioorg.2021.104693

 

  1. Mahalingam D, Mita M, Sarantopoulos J, et al. Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy. 2014;10(8):1403-1414. doi: 10.4161/auto.29231

 

  1. Liu R, Zhang B, Zou S, Cui L, Lin L, Li L. Ginsenoside Rg1 induces autophagy in colorectal cancer through inhibition of the Akt/mTOR/p70S6K pathway. J Microbiol Biotechnol. 2024;34(4):774-782. doi: 10.4014/jmb.2310.10043

 

  1. Li Z, Ke H, Cai J, et al. MTHFD1 regulates autophagy to promote growth and metastasis in colorectal cancer via the PI3K-AKT-mTOR signaling pathway. Cancer Med. 2024;13(22):e70267. doi: 10.1002/cam4.70267

 

  1. Li Y, Yan W, Qin Y, Zhang L, Xiao S. The anthraquinone derivative C2 enhances oxaliplatin-induced cell death and triggers autophagy via the PI3K/AKT/mTOR pathway. Int J Mol Sci. 2024;25(12):6468. doi: 10.3390/ijms25126468

 

  1. Lin F, Zhang G, Yang X, et al. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. J Ethnopharmacol. 2023;303:115933. doi: 10.1016/j.jep.2022.115933

 

  1. Yao W, Lin Z, Shi P, et al. Delicaflavone induces ROS-mediated apoptosis and inhibits PI3K/AKT/mTOR and Ras/MEK/Erk signaling pathways in colorectal cancer cells. Biochem Pharmacol. 2020;171:113680. doi: 10.1016/j.bcp.2019.113680

 

  1. Su T, Huang L, Zhang N, et al. FGF14 functions as a tumor suppressor through inhibiting PI3K/AKT/mTOR pathway in colorectal cancer. J Cancer. 2020;11(4):819-825. doi: 10.7150/jca.36316

 

  1. Mu BX, Li Y, Ye N, et al. Understanding apoptotic induction by Sargentodoxa cuneata-Patrinia villosa herb pair via PI3K/AKT/mTOR signalling in colorectal cancer cells using network pharmacology and cellular studies. J Ethnopharmacol. 2024;319(Pt 3):117342. doi: 10.1016/j.jep.2023.117342

 

  1. Soo HC, Chung FF, Lim KH, et al. Cudraflavone C induces tumor-specific apoptosis in colorectal cancer cells through inhibition of the phosphoinositide 3-kinase (PI3K)-AKT pathway. PLoS One. 2017;12(1):e0170551. doi: 10.1371/journal.pone.0170551

 

  1. Khan N, Jajeh F, Eberhardt EL, et al. Fisetin and 5-fluorouracil: Effective combination for PIK3CA-mutant colorectal cancer. Int J Cancer. 2019;145(11):3022-3032. doi: 10.1002/ijc.32367

 

  1. Wang J, An J, Tian L, et al. KW2478 and cisplatin synergistically anti-colorectal cancer by targeting PI3K/ AKT/mTOR pathway. Anticancer Agents Med Chem. 2025;25:800-810. doi: 10.2174/0118715206356311241128075924

 

  1. González Astorga B, Salvà Ballabrera F, Aranda Aguilar E, et al. Patient profiles as an aim to optimize selection in the second line setting: The role of aflibercept. Clin Transl Oncol. 2021;23(8):1520-1528. doi: 10.1007/s12094-021-02568-y

 

  1. Pfeiffer P, Liposits G, Taarpgaard LS. Angiogenesis inhibitors for metastatic colorectal cancer. Transl Cancer Res. 2023;12(12):3241-3244. doi: 10.21037/tcr-23-1568

 

  1. Dasari A, Lonardi S, Garcia-Carbonero R, et al. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): An international, multicentre, randomised, double-blind, phase 3 study. Lancet. 2023;402(10395):41-53. doi: 10.1016/s0140-6736(23)00772-9

 

  1. Kamel R, El Morsy EM, Elsherbiny ME, Nour-Eldin M. Chrysin promotes angiogenesis in rat hindlimb ischemia: Impact on PI3K/Akt/mTOR signaling pathway and autophagy. Drug Dev Res. 2022;83(5):1226-1237. doi: 10.1002/ddr.21954

 

  1. Yang L, Dong Z, Li S, Chen T. ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression. Aging (Albany NY). 2023;15(8):2920-2936. doi: 10.18632/aging.204559

 

  1. Qin X, Liu M, Xu C, et al. ZDQ-0620, a Novel phosphatidylinositol 3-kinase inhibitor, inhibits colorectal carcinoma cell proliferation and suppresses angiogenesis by attenuating PI3K/AKT/mTOR pathway. Front Oncol. 2022;12:848952. doi: 10.3389/fonc.2022.848952

 

  1. Chen G, Tian TT, Wang FQ, et al. Chanling gao suppresses colorectal cancer via PI3K/Akt/mTOR pathway modulation and enhances quality of survival. Environ Toxicol. 2024;39(3):1107-1118. doi: 10.1002/tox.23994

 

  1. Li X, Jiang Z, Li J, et al. PRELP inhibits colorectal cancer progression by suppressing epithelial-mesenchymal transition and angiogenesis via the inactivation of the FGF1/ PI3K/AKT pathway. Apoptosis. 2025;30(1-2):16-34. doi: 10.1007/s10495-024-02015-7

 

  1. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84. doi: 10.1038/s41580-018-0080-4

 

  1. Celesti G, Di Caro G, Bianchi P, et al. Presence of twist1- positive neoplastic cells in the stroma of chromosome-unstable colorectal tumors. Gastroenterology. 2013;145(3):647-57.e15. doi: 10.1053/j.gastro.2013.05.011

 

  1. Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 2021;22(8):e358-e368. doi: 10.1016/s1470-2045(21)00343-0

 

  1. Ni Q, Li M, Yu S. Research progress of epithelial-mesenchymal transition treatment and drug resistance in colorectal cancer. Technol Cancer Res Treat. 2022;21:15330338221081219. doi: 10.1177/15330338221081219

 

  1. Lu J, Kornmann M, Traub B. Role of epithelial to mesenchymal transition in colorectal cancer. Int J Mol Sci. 2023;24(19):14815. doi: 10.3390/ijms241914815

 

  1. Duan S, Huang W, Liu X, et al. IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/ mTOR and PI3K/AKT/FOXO1 signaling pathways. J Exp Clin Cancer Res. 2018;37(1):304. doi: 10.1186/s13046-018-0980-3

 

  1. Liao H, Zhang L, Lu S, Li W, Dong W. KIFC3 promotes proliferation, migration, and invasion in colorectal cancer via PI3K/AKT/mTOR signaling pathway. Front Genet. 2022;13:848926. doi: 10.3389/fgene.2022.848926

 

  1. Xu W, Yu M, Qin J, Luo Y, Zhong M. LACTB regulates PIK3R3 to promote autophagy and inhibit EMT and proliferation through the PI3K/AKT/mTOR signaling pathway in colorectal cancer. Cancer Manag Res. 2020;12:5181-5200. doi: 10.2147/cmar.S250661

 

  1. Markham A. Alpelisib: First global approval. Drugs. 2019;79(11):1249-1253. doi: 10.1007/s40265-019-01161-6

 

  1. Blair HA. Duvelisib: First global approval. Drugs. 2018;78(17):1847-1853. doi: 10.1007/s40265-018-1013-4

 

  1. Dhillon S, Keam SJ. Umbralisib: First approval. Drugs. 2021;81(7):857-866. doi: 10.1007/s40265-021-01504-2

 

  1. Markham A. Idelalisib: First global approval. Drugs. 2014;74(14):1701-1707. doi: 10.1007/s40265-014-0285-6

 

  1. Markham A. Copanlisib: First global approval. Drugs. 2017;77(18):2057-2062. doi: 10.1007/s40265-017-0838-6

 

  1. Leiphrakpam PD, Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int J Mol Sci. 2024;25(6):3178. doi: 10.3390/ijms25063178

 

  1. Razali NN, Raja Ali RA, Muhammad Nawawi KN, Yahaya A, Mohd Rathi ND, Mokhtar NM. Roles of phosphatidylinositol-3-kinases signaling pathway in inflammation-related cancer: Impact of rs10889677 variant and buparlisib in colitis-associated cancer. World J Gastroenterol. 2023;29(40):5543-5556. doi: 10.3748/wjg.v29.i40.5543

 

  1. Goodwin R, Jonker D, Chen E, et al. A phase Ib study of a PI3Kinase inhibitor BKM120 in combination with panitumumab in patients with KRAS wild-type advanced colorectal cancer. Invest New Drugs. 2020;38(4):1077-1084. doi: 10.1007/s10637-019-00814-3

 

  1. Rodon J, Braña I, Siu LL, et al. Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2014;32(4):670-681. doi: 10.1007/s10637-014-0082-9

 

  1. Sarker D, Ang JE, Baird R, et al. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2015;21(1):77-86. doi: 10.1158/1078-0432.Ccr-14-0947

 

  1. Hancox U, Cosulich S, Hanson L, et al. Inhibition of PI3Kβ signaling with AZD8186 inhibits growth of PTEN-deficient breast and prostate tumors alone and in combination with docetaxel. Mol Cancer Ther. 2015;14(1):48-58. doi: 10.1158/1535-7163.Mct-14-0406

 

  1. Choudhury AD, Higano CS, De Bono JS, et al. A phase I study investigating AZD8186, a potent and selective inhibitor of PI3Kβ/δ, in patients with advanced solid tumors. Clin Cancer Res. 2022;28(11):2257-2269. doi: 10.1158/1078-0432.Ccr-21-3087

 

  1. Juric D, De Bono JS, LoRusso PM, et al. A first-in-human, phase i, dose-escalation study of TAK-117, a selective PI3Kα isoform inhibitor, in patients with advanced solid malignancies. Clin Cancer Res. 2017;23(17):5015-5023. doi: 10.1158/1078-0432.Ccr-16-2888

 

  1. McRee AJ, Sanoff HK, Carlson C, Ivanova A, O’Neil BH. A phase I trial of mFOLFOX6 combined with the oral PI3K inhibitor BKM120 in patients with advanced refractory solid tumors. Invest New Drugs. 2015;33(6):1225-1231. doi: 10.1007/s10637-015-0298-3

 

  1. Agarwal E, Chaudhuri A, Leiphrakpam PD, Haferbier KL, Brattain MG, Chowdhury S. Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer. BMC Cancer. 2014;14:145. doi: 10.1186/1471-2407-14-145

 

  1. Molife LR, Yan L, Vitfell-Rasmussen J, et al. Phase 1 trial of the oral AKT inhibitor MK-2206 plus carboplatin/ paclitaxel, docetaxel, or erlotinib in patients with advanced solid tumors. J Hematol Oncol. 2014;7:1. doi: 10.1186/1756-8722-7-1

 

  1. Wisinski KB, Tevaarwerk AJ, Burkard ME, et al. Phase I study of an AKT inhibitor (MK-2206) combined with lapatinib in adult solid tumors followed by dose expansion in advanced HER2+ breast cancer. Clin Cancer Res. 2016;22(11):2659-2667. doi: 10.1158/1078-0432.Ccr-15-2365

 

  1. Do K, Speranza G, Bishop R, et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY- 142886) in patients with colorectal cancer. Invest New Drugs. 2015;33(3):720-728. doi: 10.1007/s10637-015-0212-z

 

  1. Oleksak P, Nepovimova E, Chrienova Z, Musilek K, Patocka J, Kuca K. Contemporary mTOR inhibitor scaffolds to diseases breakdown: A patent review (2015-2021). Eur J Med Chem. 2022;238:114498. doi: 10.1016/j.ejmech.2022.114498

 

  1. Chen Y, Zhou X. Research progress of mTOR inhibitors. Eur J Med Chem. 2020;208:112820. doi: 10.1016/j.ejmech.2020.112820

 

  1. Wang D, Eisen HJ. Mechanistic target of rapamycin (mTOR) inhibitors. Handb Exp Pharmacol. 2022;272:53-72. doi: 10.1007/164_2021_553

 

  1. Qiu HY, Wang PF, Zhang M. A patent review of mTOR inhibitors for cancer therapy (2011-2020). Expert Opin Ther Pat. 2021;31(11):965-975. doi: 10.1080/13543776.2021.1940137

 

  1. Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of research into mTOR inhibitors. Molecules. 2022;27(16):5295. doi: 10.3390/molecules27165295

 

  1. Yang G, Francis D, Krycer JR, et al. Dissecting the biology of mTORC1 beyond rapamycin. Sci Signal. 2021;14(701):eabe0161. doi: 10.1126/scisignal.abe0161

 

  1. Gulhati P, Bowen KA, Liu J, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 2011;71(9):3246-3256. doi: 10.1158/0008-5472.Can-10-4058

 

  1. Francipane MG, Lagasse E. Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor torin-1. Oncotarget. 2013;4(11):1948-1962. doi: 10.18632/oncotarget.1310

 

  1. Ng K, Tabernero J, Hwang J, et al. Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. Clin Cancer Res. 2013;19(14):3987-3995. doi: 10.1158/1078-0432.Ccr-13-0027

 

  1. Altomare I, Bendell JC, Bullock KE, et al. A phase II trial of bevacizumab plus everolimus for patients with refractory metastatic colorectal cancer. Oncologist. 2011;16(8):1131-1137. doi: 10.1634/theoncologist.2011-0078

 

  1. Wolpin BM, Ng K, Zhu AX, et al. Multicenter phase II study of tivozanib (AV-951) and everolimus (RAD001) for patients with refractory, metastatic colorectal cancer. Oncologist. 2013;18(4):377-378. doi: 10.1634/theoncologist.2012-0378

 

  1. Townsend A, Tebbutt N, Karapetis C, et al. Phase IB/II study of second-line therapy with panitumumab, irinotecan, and everolimus (PIE) in KRAS wild-type metastatic colorectal cancer. Clin Cancer Res. 2018;24(16):3838-3844. doi: 10.1158/1078-0432.Ccr-17-3590

 

  1. Weldon Gilcrease G, Stenehjem DD, Wade ML, et al. Phase I/II study of everolimus combined with mFOLFOX-6 and bevacizumab for first-line treatment of metastatic colorectal cancer. Invest New Drugs. 2019;37(3):482-489. doi: 10.1007/s10637-018-0645-2

 

  1. Li C, Cui JF, Chen MB, et al. The preclinical evaluation of the dual mTORC1/2 inhibitor INK-128 as a potential anti-colorectal cancer agent. Cancer Biol Ther. 2015;16(1):34-42. doi: 10.4161/15384047.2014.972274

 

  1. Fricke SL, Payne SN, Favreau PF, et al. MTORC1/2 inhibition as a therapeutic strategy for PIK3CA mutant cancers. Mol Cancer Ther. 2019;18(2):346-355. doi: 10.1158/1535-7163.Mct-18-0510

 

  1. Yu Y, Yu X, Ma J, Tong Y, Yao J. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. Int J Oncol. 2016;49(1):285-293. doi: 10.3892/ijo.2016.3507

 

  1. Helmy MW, Ghoneim AI, Katary MA, Elmahdy RK. The synergistic anti-proliferative effect of the combination of diosmin and BEZ-235 (dactolisib) on the HCT-116 colorectal cancer cell line occurs through inhibition of the PI3K/Akt/ mTOR/NF-κB axis. Mol Biol Rep. 2020;47(3):2217-2230. doi: 10.1007/s11033-020-05327-4

 

  1. Rodon J, Pérez-Fidalgo A, Krop IE, et al. Phase 1/1b dose escalation and expansion study of BEZ235, a dual PI3K/ mTOR inhibitor, in patients with advanced solid tumors including patients with advanced breast cancer. Cancer Chemother Pharmacol. 2018;82(2):285-298. doi: 10.1007/s00280-018-3610-z

 

  1. Dolly SO, Wagner AJ, Bendell JC, et al. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2016;22(12):2874-2884. doi: 10.1158/1078-0432.Ccr-15-2225

 

  1. Wainberg ZA, Alsina M, Soares HP, et al. A multi-arm phase I study of the PI3K/mTOR inhibitors PF-04691502 and gedatolisib (PF-05212384) plus irinotecan or the MEK inhibitor PD-0325901 in advanced cancer. Target Oncol. 2017;12(6):775-785. doi: 10.1007/s11523-017-0530-5

 

  1. Xie Y, Liu C, Zhang Y, et al. PKI-587 enhances radiosensitization of hepatocellular carcinoma by inhibiting the PI3K/AKT/mTOR pathways and DNA damage repair. PloS One. 2021;16(10):e0258817. doi: 10.1371/journal.pone.0258817

 

  1. Chow Z, Johnson J, Chauhan A, et al. PI3K/mTOR dual inhibitor PF-04691502 is a schedule-dependent radiosensitizer for gastroenteropancreatic neuroendocrine tumors. Cells. 2021;10(5):1261. doi: 10.3390/cells10051261

 

  1. Chen YH, Wang CW, Wei MF, et al. Maintenance BEZ235 treatment prolongs the therapeutic effect of the combination of BEZ235 and radiotherapy for colorectal cancer. Cancers (Basel). 2019;11(8):1204. doi: 10.3390/cancers11081204
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing