AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025100046
REVIEW ARTICLE

Advances in understanding the mechanism and treatment strategies of radiation myelopathy

Yuhang Yu1 Yukai Tang1 Shengyi Liu1 Limin Liu1*
Show Less
1 Department of Hematology and Oncology, The 921st Hospital of Joint Logistics Support Force, The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
Received: 7 March 2025 | Revised: 17 April 2025 | Accepted: 8 May 2025 | Published online: 29 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Radiation myelopathy (RM) is a severe, late-onset complication of radiotherapy, involving complex pathological processes, such as vascular endothelial cell damage, disruption of the blood-spinal cord barrier, inflammation, demyelination, hypoxia, and tissue necrosis. Traditional treatments, including corticosteroids and immunoglobulins, can effectively alleviate acute symptoms, but their long-term use may cause side effects and offer limited efficacy, especially in advanced stages of the disease where significant neurological recovery remains challenging. In recent years, emerging therapeutic strategies for RM – such as neuromodulation technologies, stem cell transplantation, tissue engineering, and gene therapy – have gained increasing attention. These approaches promote spinal cord repair and functional recovery through mechanisms, such as neuroprotection, myelin regeneration, axonal regeneration, and immune modulation. In addition, the use of biomaterials, such as hydrogels and nanodelivery systems has enhanced the delivery efficiency and therapeutic efficacy of both drugs and cells. Future research should focus on optimizing intervention timing and developing combination treatment strategies – such as incorporating antifibrotic drugs, anti-inflammatory therapies, and hyperbaric oxygen therapy – to improve the microenvironment of injury and enhance therapeutic outcomes. This review evaluates the pathological mechanisms of RM, explores emerging therapeutic strategies, and highlights future research directions to improve clinical efficacy.

Keywords
Pathological mechanisms
Radiation myelopathy
Review
Treatment strategies
Funding
This review was supported by the Hunan Provincial Natural Science Foundation of China (2024JJ9488).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Schultheiss TE. The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys. 2008;71(5):1455-1459. doi: 10.1016/j.ijrobp.2007.11.075

 

  1. Jackson CB, Boe LA, Zhang L, et al. Radiation myelitis risk after hypofractionated spine stereotactic body radiation therapy. JAMA Oncol. 2025;11(2):128-134. doi: 10.1001/jamaoncol.2024.5387

 

  1. Wong CS, Fehlings MG, Sahgal A. Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord. 2015;53(8):574-580. doi: 10.1038/sc.2015.43

 

  1. Schultheiss TE, Stephens LC, Maor MH. Analysis of the histopathology of radiation myelopathy. Int J Radiat Oncol Biol Phys. 1988;14(1):27-32. doi: 10.1016/0360-3016(88)90046-6

 

  1. Li YQ, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res. 2003;63(18):5950-5956.

 

  1. Peña LA, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: Protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 2000;60(2):321-327.

 

  1. Murrell DH, Zarghami N, Jensen MD, Chambers AF, Wong E, Foster PJ. Evaluating Changes to blood-brain barrier integrity in brain metastasis over time and after radiation treatment. Transl Oncol. 2016;9(3):219-227. doi: 10.1016/j.tranon.2016.04.006

 

  1. Stewart PA, Vinters HV, Wong CS. Blood-spinal cord barrier function and morphometry after single doses of x-rays in rat spinal cord. Int J Radiat Oncol Biol Phys. 1995;32(3):703-711. doi: 10.1016/0360-3016(94)00594-B

 

  1. Li YQ, Aubert I, Wong CS. Abrogation of early apoptosis does not alter late inhibition of hippocampal neurogenesis after irradiation. Int J Radiat Oncol Biol Phys. 2010;77(4):1213-1222. doi: 10.1016/j.ijrobp.2010.01.015

 

  1. Chow BM, Li YQ, Wong CS. Radiation-induced apoptosis in the adult central nervous system is p53-dependent. Cell Death Differ. 2000;7(8):712-720. doi: 10.1038/sj.cdd.4400704

 

  1. Atkinson SL, Li YQ, Wong CS. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord. Int J Radiat Oncol Biol Phys. 2005;62(2):535-5544. doi: 10.1016/j.ijrobp.2005.01.061

 

  1. Hawryluk GW, Fehlings MG. The center of the spinal cord may be central to its repair. Cell Stem Cell. 2008;3(3):230-232. doi: 10.1016/j.stem.2008.08.009

 

  1. Tsao MN, Li YQ, Lu G, Xu Y, Wong CS. Upregulation of vascular endothelial growth factor is associated with radiation-induced blood-spinal cord barrier breakdown. J Neuropathol Exp Neurol. 1999;58(10):1051-1060. doi: 10.1097/00005072-199910000-00003

 

  1. Li YQ, Ballinger JR, Nordal RA, Su ZF, Wong CS. Hypoxia in radiation-induced blood-spinal cord barrier breakdown. Cancer Res. 2001;61(8):3348-3354.

 

  1. Long HQ, Li GS, Cheng X, Xu JH, Li FB. Role of hypoxia-induced VEGF in blood-spinal cord barrier disruption in chronic spinal cord injury. Chin J Traumatol. 2015;18(5):293-295. doi: 10.1016/j.cjtee.2015.08.004

 

  1. Vaquero J, Zurita M, De Oya S, Coca S. Vascular endothelial growth/permeability factor in spinal cord injury. J Neurosurg. 1999;90 2 Suppl:220-223. doi: 10.3171/spi.1999.90.2.0220

 

  1. Benton RL, Whittemore SR. VEGF165 therapy exacerbates secondary damage following spinal cord injury. Neurochem Res. 2003;28(11):1693-1703. doi: 10.1023/a:1026013106016

 

  1. Widenfalk J, Lipson A, Jubran M, et al. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience. 2003;120(4):951-960. doi: 10.1016/s0306-4522(03)00399-3

 

  1. Xiaowei H, Ninghui Z, Wei X, Yiping T, Linfeng X. The experimental study of hypoxia-inducible factor-1alpha and its target genes in spinal cord injury. Spinal Cord. 2006;44(1):35-43. doi: 10.1038/sj.sc.3101813

 

  1. Kao CH, Chen SH, Chio CC, Lin MT. Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Shock. 2008;29(1):49-55. doi: 10.1097/shk.0b013e31805cddce

 

  1. Facchiano F, Fernandez E, Mancarella S, et al. Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J Neurosurg. 2002;97(1):161-168. doi: 10.3171/jns.2002.97.1.0161

 

  1. Sakanaka M, Zhu P, Zhang B, et al. Intravenous infusion of dihydroginsenoside Rb1 prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL. J Neurotrauma. 2007;24(6):1037-1054. doi: 10.1089/neu.2006.0182

 

  1. Choi UH, Ha Y, Huang X, et al. Hypoxia-inducible expression of vascular endothelial growth factor for the treatment of spinal cord injury in a rat model. J Neurosurg Spine. 2007;7(1):54-60. doi: 10.3171/SPI-07/07/054

 

  1. Fehlings MG, Wilson JR, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: Recommendations on the use of methylprednisolone sodium succinate. Global Spine J. 2017;7(3 Suppl):203S-211S. doi: 10.1177/2192568217703085

 

  1. Marchioni E, Marinou-Aktipi K, Uggetti C, et al. Effectiveness of intravenous immunoglobulin treatment in adult patients with steroid-resistant monophasic or recurrent acute disseminated encephalomyelitis. J Neurol. 2002;249(1):100-104. doi: 10.1007/pl00007836

 

  1. Naghavi S, Motahharynia A, Fatemi F, Ahmadi E, Mokhtari F, Adibi I. The benefit of intravenous immune globulin in the treatment of delayed radiation myelopathy. Strahlenther Onkol. 2024;200(9):827-831. doi: 10.1007/s00066-023-02150-1

 

  1. Picca A, Berzero G, Bihan K, et al. Longitudinally extensive myelitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm. 2021;8(3):e967. doi: 10.1212/NXI.0000000000000967

 

  1. Möhn N, Beutel G, Gutzmer R, Ivanyi P, Satzger I, Skripuletz T. Neurological immune related adverse events associated with nivolumab, ipilimumab, and pembrolizumab therapy-review of the literature and future outlook. J Clin Med. 2019;8(11):1777. doi: 10.3390/jcm8111777

 

  1. Chang VA, Simpson DR, Daniels GA, Piccioni DE. Infliximab for treatment-refractory transverse myelitis following immune therapy and radiation. J Immunother Cancer. 2018;6(1):153. doi: 10.1186/s40425-018-0471-2

 

  1. Owen T, Fung AS. Combination intravenous immune globulin (IVIG) and high dose steroids for treatment of immune-related myelitis in a non-small cell lung cancer patient treated with pembrolizumab and palliative radiation treatment: A case report. Clin Lung Cancer. 2022;23(8):e563-e567. doi: 10.1016/j.cllc.2022.08.012

 

  1. Zhang Y, Zou Z, Liu S, et al. Edaravone-loaded poly(amino acid) nanogel inhibits ferroptosis for neuroprotection in cerebral ischemia injury. Asian J Pharm Sci. 2024;19(2):100886. doi: 10.1016/j.ajps.2024.100886

 

  1. Lu ZX, Wang JH, Xu N, Luan J, Pang XY, Xia YJ. Protective effect of compound raspberry seed powder on radiation-induced spinal cord injury in mice. J Radiat Res Radiat Process. 2020;38(1):46-53. doi: 10.11889/j.1000-3436.2020.rrj.38.010303

 

  1. Zhang XY, Zhou P, Zhu C, Chu XD. Effects of Panax ginseng and Chuanxiong on behavioral changes and axonal regeneration after spinal cord injury. Chin J Ethnomed Ethnopharmacol. 2009;18(20):4-5.

 

  1. Enginar H, Cemek M, Karaca T, Unak P. Effect of grape seed extract on lipid peroxidation, antioxidant activity and peripheral blood lymphocytes in rats exposed to x-radiation. Phytother Res. 2007;21(11):1029-1035. doi: 10.1002/ptr.2201

 

  1. Yalinkilic O, Enginar H. Effect of X-radiation on lipid peroxidation and antioxidant systems in rats treated with saponin-containing compounds. Photochem Photobiol. 2008;84(1):236-242. doi: 10.1111/j.1751-1097.2007.00240.x

 

  1. Deger Y, Dede S, Belge A, Mert N, Kahraman T, Alkan M. Effects of X-ray radiation on lipid peroxidation and antioxidant systems in rabbits treated with antioxidant compounds. Biol Trace Elem Res. 2003;94(2):149-156. doi: 10.1385/BTER:94:2:149

 

  1. Peker S, Abacioglu U, Sun I, Konya D, Yüksel M, Pamir NM. Prophylactic effects of magnesium and vitamin E in rat spinal cord radiation damage: Evaluation based on lipid peroxidation levels. Life Sci. 2004;75(12):1523-1530. doi: 10.1016/j.lfs.2004.05.003

 

  1. Nieder C, Andratschke NH, Wiedenmann N, Molls M. Prevention of radiation-induced central nervous system toxicity: A role for amifostine? Anticancer Res. 2004;24(6):3803-3809.

 

  1. Saager M, Hahn EW, Peschke P, et al. Ramipril reduces incidence and prolongates latency time of radiation-induced rat myelopathy after photon and carbon ion irradiation. J Radiat Res. 2020;61(5):791-798. doi: 10.1093/jrr/rraa042

 

  1. Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994;44(11):2020-2027. doi: 10.1212/wnl.44.11.2020

 

  1. Hornsey S, Myers R, Jenkinson T. The reduction of radiation damage to the spinal cord by post-irradiation administration of vasoactive drugs. Int J Radiat Oncol Biol Phys. 1990;18(6):1437-1442. doi: 10.1016/0360-3016(90)90319-f

 

  1. Psimaras D, Tafani C, Ducray F, et al. Bevacizumab in late-onset radiation-induced myelopathy. Neurology. 2016;86(5):454-457. doi: 10.1212/WNL.0000000000002345

 

  1. Lee JY, Kim HS, Choi HY, Oh TH, Ju BG, Yune TY. Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury. J Neurochem. 2012;121(5):818-829. doi: 10.1111/j.1471-4159.2012.07731.x

 

  1. Gil-Agudo Á, Megía-García Á, Pons JL, et al. Correction: Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: Results from a randomized controlled trial. J Neuroeng Rehabil. 2023;20(1):160. doi: 10.1186/s12984-023-01281-x

 

  1. Park JM, Kim YW, Lee SJ, Shin JC. Robot-assisted gait training in individuals with spinal cord injury: A systematic review and meta-analysis of randomized controlled trials. Ann Rehabil Med. 2024;48(3):171-191. doi: 10.5535/arm.230039

 

  1. Villiger M, Bohli D, Kiper D, et al. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil Neural Repair. 2013;27(8):675-683. doi: 10.1177/1545968313490999

 

  1. Demolder C, Molina A, Hammond FL 3rd, Yeo WH. Recent advances in wearable biosensing gloves and sensory feedback biosystems for enhancing rehabilitation, prostheses, healthcare, and virtual reality. Biosens Bioelectron. 2021;190:113443. doi: 10.1016/j.bios.2021.113443

 

  1. Lee S, Kim J, Kim J. Substantiating clinical effectiveness and potential barriers to the widespread implementation of spinal cord injury telerehabilitation: A systematic review and qualitative synthesis of randomized trials in the recent past decade. Telemed Rep. 2021;2(1):64-77. doi: 10.1089/tmr.2020.0026

 

  1. Craig A, Tran Y, Middleton J. Psychological morbidity and spinal cord injury: A systematic review. Spinal Cord. 2009;47(2):108-114. doi: 10.1038/sc.2008.115

 

  1. Cao Y, Wu H, Shi S, Xie D. Effects of mindfulness-based stress reduction therapy for sleep quality and perceived stress in patients with spinal cord injury. Explore (NY). 2024;20(5):103037. doi: 10.1016/j.explore.2024.103037

 

  1. Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. Lancet. 2011;377(9781):1938-1947. doi: 10.1016/S0140-6736(11)60547-3

 

  1. Angeli CA, Boakye M, Morton RA, et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med. 2018;379(13):1244-1250. doi: 10.1056/NEJMoa1803588

 

  1. Wagner FB, Mignardot JB, Le Goff-Mignardot CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563(7729):65-71. doi: 10.1038/s41586-018-0649-2

 

  1. Cheng KJ. Neurobiological mechanisms of acupuncture for some common illnesses: A clinician’s perspective. J Acupunct Meridian Stud. 2014;7(3):105-114. doi: 10.1016/j.jams.2013.07.008

 

  1. He K, Hu R, Huang Y, Qiu B, Chen Q, Ma R. Effects of acupuncture on neuropathic pain induced by spinal cord injury: A systematic review and meta-analysis. Evid Based Complement Alternat Med. 2022;2022:6297484. doi: 10.1155/2022/6297484

 

  1. Zhou Y, Liu XH, Qu SD, et al. Hyperbaric oxygen intervention on expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in spinal cord injury models in rats. Chin Med J (Engl). 2013;126(20):3897-3903.

 

  1. Fernández E, Morillo V, Salvador M, et al. Hyperbaric oxygen and radiation therapy: A review. Clin Transl Oncol. 2021;23(6):1047-1053. doi: 10.1007/s12094-020-02513-5

 

  1. Bodensohn R, Haehl E, Belka C, Niyazi M. Fractionated radiotherapy for spinal tumors: A literature review regarding spinal glioma, ependymoma, and meningioma. Neurooncol Adv. 2024;6(Suppl 3):3101-3109. doi: 10.1093/noajnl/vdad158

 

  1. Lobel DA, Lee KH. Brain machine interface and limb reanimation technologies: Restoring function after spinal cord injury through development of a bypass system. Mayo Clin Proc. 2014;89(5):708-714. doi: 10.1016/j.mayocp.2014.02.003

 

  1. Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature. 2016;533(7602):247-250. doi: 10.1038/nature17435

 

  1. Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature. 2023;618(7963):126-133. doi: 10.1038/s41586-023-06094-5

 

  1. Lu P, Woodruff G, Wang Y, et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron. 2014;83(4):789-796. doi: 10.1016/j.neuron.2014.07.014

 

  1. Yang N, Zuchero JB, Ahlenius H, et al. Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol. 2013;31(5):434-439. doi: 10.1038/nbt.2564

 

  1. Sparling JS, Bretzner F, Biernaskie J, et al. Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat. J Neurosci. 2015;35(17):6714-6730. doi: 10.1523/JNEUROSCI.1070-14.2015

 

  1. Biernaskie J, Sparling JS, Liu J, et al. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci. 2007;27(36):9545-9559. doi: 10.1523/JNEUROSCI.1930-07.2007

 

  1. Takami T, Oudega M, Bates ML, Wood PM, Kleitman N, Bunge MB. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci. 2002;22(15):6670-6681. doi: 10.1523/JNEUROSCI.22-15-06670.200

 

  1. Williams RR, Henao M, Pearse DD, Bunge MB. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration. Cell Transplant. 2015;24(1):115-131. doi: 10.3727/096368913X674657

 

  1. Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 2012;21(12):2222-2238. doi: 10.1089/scd.2011.0596

 

  1. Cao Q, Xu XM, Devries WH, et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci. 2005;25(30):6947-6957. doi: 10.1523/JNEUROSCI.1065-05.2005

 

  1. Cao Q, He Q, Wang Y, et al. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci. 2010;30(8):2989-3001. doi: 10.1523/JNEUROSCI.3174-09.2010

 

  1. Lu P, Wang Y, Graham L, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. 2012;150(6):1264-1273. doi: 10.1016/j.cell.2012.08.020

 

  1. Hawryluk GW, Spano S, Chew D, et al. An examination of the mechanisms by which neural precursors augment recovery following spinal cord injury: A key role for remyelination. Cell Transplant. 2014;23(3):365-380. doi: 10.3727/096368912X662408

 

  1. Plemel JR, Chojnacki A, Sparling JS, et al. Platelet-derived growth factor-responsive neural precursors give rise to myelinating oligodendrocytes after transplantation into the spinal cords of contused rats and dysmyelinated mice. Glia. 2011;59(12):1891-1910. doi: 10.1002/glia.21232

 

  1. Yasuda A, Tsuji O, Shibata S, et al. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells. 2011;29(12):1983-1994. doi: 10.1002/stem.767

 

  1. Cusimano M, Biziato D, Brambilla E, et al. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain. 2012;135(Pt 2):447-460. doi: 10.1093/brain/awr339

 

  1. Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells. 2010;28(1):152-163. doi: 10.1002/stem.245

 

  1. Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694-4705. doi: 10.1523/JNEUROSCI.0311-05.2005

 

  1. All AH, Gharibani P, Gupta S, et al. Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS One. 2015;10(1):e0116933. doi: 10.1371/journal.pone.0116933

 

  1. López-Vales R, García-Alías G, Forés J, Navarro X, Verdú E. Increased expression of cyclo-oxygenase 2 and vascular endothelial growth factor in lesioned spinal cord by transplanted olfactory ensheathing cells. J Neurotrauma. 2004;21(8):1031-1043. doi: 10.1089/0897715041651105

 

  1. Barbour HR, Plant CD, Harvey AR, Plant GW. Tissue sparing, behavioral recovery, supraspinal axonal sparing/ regeneration following sub-acute glial transplantation in a model of spinal cord contusion. BMC Neurosci. 2013;14:106. doi: 10.1186/1471-2202-14-106

 

  1. Takeoka A, Jindrich DL, Muñoz-Quiles C, et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation. J Neurosci. 2011;31(11):4298-4310. doi: 10.1523/JNEUROSCI.4967-10.2011

 

  1. Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD. Combining schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci. 2005;25(5):1169-1178. doi: 10.1523/JNEUROSCI.3562-04.200

 

  1. Barakat DJ, Gaglani SM, Neravetla SR, et al. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant. 2005;14(4):225-240. doi: 10.3727/000000005783983106

 

  1. Richter MW, Fletcher PA, Liu J, Tetzlaff W, Roskams AJ. Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord. J Neurosci. 2005;25(46):10700-10711. doi: 10.1523/JNEUROSCI.3632-05.2005

 

  1. Ramer LM, Au E, Richter MW, Liu J, Tetzlaff W, Roskams AJ. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol. 2004;473(1):1-15. doi: 10.1002/cne.20049

 

  1. Gu W, Zhang F, Xue Q, Ma Z, Lu P, Yu B. Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology. 2010;30(3):205-217. doi: 10.1111/j.1440-1789.2009.01063.x

 

  1. Ritfeld GJ, Patel A, Chou A, et al. The role of brain-derived neurotrophic factor in bone marrow stromal cell-mediated spinal cord repair. Cell Transplant. 2015;24(11):2209-2220. doi: 10.3727/096368915X686201

 

  1. Lu P, Blesch A, Graham L, et al. Motor axonal regeneration after partial and complete spinal cord transection. J Neurosci. 2012;32(24):8208-8218. doi: 10.1523/JNEUROSCI.0308-12.2012

 

  1. Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci. 2004;24(28):6402-6409. doi: 10.1523/JNEUROSCI.1492-04.2004

 

  1. DePaul MA, Palmer M, Lang BT, et al. Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury. Sci Rep. 2015;5:167195. doi: 10.1038/srep16795

 

  1. Nakajima H, Uchida K, Guerrero AR, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma. 2012;29(8):1614-1625. doi: 10.1089/neu.2011.2109

 

  1. Sharma P, Maurya DK. Wharton’s jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury. World J Stem Cells. 2024;16(7):742-759. doi: 10.4252/wjsc.v16.i7.742

 

  1. You H, Wei L, Zhang J, Wang JN. Vascular endothelial growth factor enhanced the angiogenesis response of human umbilical cord-derived mesenchymal stromal cells in a rat model of radiation myelopathy. Neurochem Res. 2015;40(9):1892-1903. doi: 10.1007/s11064-015-1684-0

 

  1. Wang XZ, Xu WR, Zhu W, et al. Fluorescence labeling for human bone marrow mesenchymal stem cells wirh PHK26. Chin J Lab Med. 2006;29(9):834-837.

 

  1. Awidi A, Al Shudifat A, El Adwan N, et al. Safety and potential efficacy of expanded mesenchymal stromal cells of bone marrow and umbilical cord origins in patients with chronic spinal cord injuries: A phase I/II study. Cytotherapy. 2024;26(8):825-831. doi: 10.1016/j.jcyt.2024.03.480

 

  1. Nakazaki M, Yokoyama T, Lankford KL, Hirota R, Kocsis JD, Honmou O. Mesenchymal stem cells and their extracellular vesicles: Therapeutic mechanisms for blood-spinal cord barrier repair following spinal cord injury. Int J Mol Sci. 2024;25(24):13460. doi: 10.3390/ijms252413460

 

  1. Fang YF, Zhang C, Han MM, et al. Engineered MSCs break endothelial-myofibroblast crosstalk in pulmonary fibrosis: Reconstructing the vascular niche. Adv Mater. 2025;37(13):e2414601. doi: 10.1002/adma.202414601

 

  1. Yusoff FM, Nakashima A, Kawano KI, et al. Implantation of Hypoxia-induced mesenchymal stem cell advances therapeutic angiogenesis. Stem Cells Int. 2022;2022:6795274. doi: 10.1155/2022/6795274

 

  1. Chen C, Zeng BW, Xue D, et al. Preliminary report of pirfenidone for the prevention of radiation pneumonitis inpatients with esophageal cancer: Analysis using inverse probability oftreatment weighting. Chin J Clin Oncol. 2021;48(15):772-776. doi: 10.1183/13993003.01484-2024

 

  1. Lai J, Lin PX, Huang J. Research progress of radiation-induced brain injury for nasopharyngeal carcinoma. Cancer Res Prev Treat. 2023;50(11):1133-1138.

 

  1. Chen H, Wang W, Yang Y, et al. A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury. Biomaterials. 2025;316:122995. doi: 10.1016/j.biomaterials.2024.122995

 

  1. Peng H, Liu Y, Xiao F, et al. Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury. Front Bioeng Biotechnol. 2023;11:1111882. doi: 10.3389/fbioe.2023.1111882

 

  1. Ma YH, Shi HJ, Wei QS, et al. Developing a mechanically matched decellularized spinal cord scaffold for the in situ matrix-based neural repair of spinal cord injury. Biomaterials. 2021;279:121192. doi: 10.1016/j.biomaterials.2021.121192

 

  1. Zuo Y, Ye J, Cai W, et al. Controlled delivery of a neurotransmitter-agonist conjugate for functional recovery after severe spinal cord injury. Nat Nanotechnol. 2023;18(10):1230-1240. doi: 10.1038/s41565-023-01416-0

 

  1. Li W, Chen J, Zhao S, et al. High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nat Commun. 2022;13(1):1262. doi: 10.1038/s41467-022-28787-7

 

  1. Wang ZM, Bi MY, He JF, Ren BX, Liu DJ. Development of CRISPR/Cas9 system and its application in animal gene editing. China Biotechnol. 2020;40(10):43-50.

 

  1. Kong WJ. Electrospun PLGA Scaffolds Co-loaded with Neural Stem Cells andfingolimod for Repairing Spinal Cord Injury. China: Jilin University; 2020.

 

  1. Minhas PS, Jones JR, Latif-Hernandez A, et al. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies. Science. 2024;385(6711):eabm6131. doi: 10.1126/science.abm6131

 

  1. Li M, Fang Y. Research progresses of TGF-β/Smads signaling pathway-related therapeutic strategies for pathological scar. J Shanghai Jiaotong Univ (Med Sci). 2016;36(4):594. doi: 10.3969/j.issn.1674-8115.2016.04.027

 

  1. Li, J. Mechanism of TGN-020 Promoting Motorfunction Recovery After Spinal Cord Injury in Rat. China: Jinzhou Medical University; 2019.

 

  1. Li J, Li G, Guo WD, et al. Effects of TGN-020 on secondary edema and astrocyte proliferation after spinal cord injury in rats. J Xi’an Jiaotong Univ (Med Sci). 2018;39(5 ):685- 690+718.
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing