AccScience Publishing / EJMO / Online First / DOI: 10.36922/ejmo.8404
ORIGINAL RESEARCH ARTICLE

A novel ultraviolet-associated gene signature to predict prognosis and immunological features in patients with skin melanoma

Xiaoyun Jiang1 Defeng Kong1 Hao Cheng1*
Show Less
1 Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
Received: 4 January 2025 | Revised: 30 April 2025 | Accepted: 8 May 2025 | Published online: 29 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Research on the impact of ultraviolet (UV)-related genes on the prognosis of melanoma is rare. Objective: This study aimed to explore the role of UV-associated genes in skin melanoma and their impact on prognosis. Methods: We evaluated the prognostic implications of UV-associated genes in cutaneous melanoma and developed a predictive model for patient outcomes utilizing skin melanoma datasets sourced from The Cancer Genome Atlas. Subsequently, we investigated the correlation between UV-associated genes and the local immune environment within cutaneous melanoma. Results: The developed prognostic model for cutaneous melanoma holds significant value for clinicians in assessing patient outcomes. The expression levels of UV-associated genes appear to influence the infiltration degree of various immune cells within the tumor microenvironment, including T cells and M1 macrophages. In addition, the model was able to predict melanoma prognosis and stratify melanoma patients, with patients in the high-risk group having a worse prognosis. Results also indicated that the high-risk group exhibited reduced infiltration of cytotoxic immune cells in the tumor tissue than the low-risk group. Conclusion: The findings from this novel study have the potential to identify new therapeutic targets in treating cutaneous melanoma.

Keywords
Ultraviolet-associated genes
Skin melanoma
Prognosis
Immune infiltration
Drug prediction
Funding
This work was supported by the National Natural Science Foundation of China (Grant number: 82373491).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Rindi G, Klimstra DS, Abedi-Ardekani B, et al. A common classification framework for neuroendocrine neoplasms: An international agency for research on cancer (IARC) and world health organization (WHO) expert consensus proposal. Mod Pathol. 2018;31(12):1770-1786. doi: 10.1038/s41379-018-0110-y

 

  1. Lin TL, Lu CT, Karmakar R, et al. Assessing the efficacy of the spectrum-aided vision enhancer (SAVE) to detect acral lentiginous melanoma, melanoma in situ, nodular melanoma, and superficial spreading melanoma. Diagnostics (Basel). 2024;14(15):1672. doi: 10.3390/diagnostics14151672

 

  1. Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy. Signal Transduct Target Ther. 2021;6(1):424. doi: 10.1038/s41392-021-00827-6

 

  1. Schadendorf D, Van Akkooi AC, Berking C, et al. Melanoma. Lancet. 2018;392(10151):971-984. doi: 10.1016/s0140-6736(18)31559-9

 

  1. Liu L, Zhang W, Gao T, Li C. Is UV an etiological factor of acral melanoma? J Expo Sci Environ Epidemiol. 2016;26(6):539-545. doi: 10.1038/jes.2015.60

 

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33. doi: 10.3322/caac.21654

 

  1. Fadadu RP, Wei ML. Ultraviolet A radiation exposure and melanoma: A review. Melanoma Res. 2022;32(6):405-410. doi: 10.1097/cmr.0000000000000857

 

  1. Alves-Fernandes DK, Jasiulionis MG. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci. 2019;20(13):3153. doi: 10.3390/ijms20133153

 

  1. Garbe C, Amaral T, Peris K, et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment - update 2022. Eur J Cancer. 2022;170:256-284. doi: 10.1016/j.ejca.2022.04.018

 

  1. Zhou B, Zhang JY, Liu XS, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 2018;28(12):1171-1185. doi: 10.1038/s41422-018-0090-y

 

  1. Basit F, Van Oppen LM, Schöckel L, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 2017;8(3):e2716. doi: 10.1038/cddis.2017.133

 

  1. Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: Systematic review and meta-analysis. BMJ. 2012;345:e4757. doi: 10.1136/bmj.e4757

 

  1. Zhang N, Wang L, Zhu GN, et al. The association between trauma and melanoma in the Chinese population: A retrospective study. J Eur Acad Dermatol Venereol. 2014;28(5):597-603. doi: 10.1111/jdv.12141

 

  1. Wilski NA, Casale CD, Purwin TJ, Aplin AE, Snyder CM. Murine cytomegalovirus infection of melanoma lesions delays tumor growth by recruiting and repolarizing monocytic phagocytes in the tumor. J Virol. 2019;93(20):e00533-19. doi: 10.1128/jvi.00533-19

 

  1. Ciccarese G, Drago F, Broccolo F, et al. Oncoviruses and melanomas: A retrospective study and literature review. J Med Virol. 2023;95(1):e27924. doi: 10.1002/jmv.27924

 

  1. Kugić A, Dabelić S, Brala CJ, Dabelić N, Barbarić M. Extra virgin olive oil secoiridoids modulate the metabolic activity of dacarbazine pre-treated and treatment-naive melanoma cells. Molecules. 2022;27(10):3310. doi: 10.3390/molecules27103310

 

  1. Dafni U, Michielin O, Lluesma SM, et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: A systematic review and meta-analysis. Ann Oncol. 2019;30(12):1902-1913. doi: 10.1093/annonc/mdz398

 

  1. Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: Understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022;23(5):660-670. doi: 10.1038/s41590-022-01141-1

 

  1. Namikawa K, Yamazaki N. Targeted therapy and immunotherapy for melanoma in Japan. Curr Treat Options Oncol. 2019;20(1):7. doi: 10.1007/s11864-019-0607-8

 

  1. Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral t cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(6): 1109-1119.e10. doi: 10.1016/j.cell.2017.08.027

 

  1. Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780-2788. doi: 10.1200/jco.2014.58.3377

 

  1. Ito T, Tanaka Y, Murata M, Kaku-Ito Y, Furue K, Furue M. BRAF heterogeneity in melanoma. Curr Treat Options Oncol. 2021;22(3):20. doi: 10.1007/s11864-021-00818-3

 

  1. Loria R, Laquintana V, Scalera S, et al. SEMA6A/RhoA/ YAP axis mediates tumor-stroma interactions and prevents response to dual BRAF/MEK inhibition in BRAF-mutant melanoma. J Exp Clin Cancer Res. 2022;41(1):148. doi: 10.1186/s13046-022-02354-w

 

  1. Serratì S, Guida M, Di Fonte R, et al. Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma. Mol Cancer. 2022;21(1):20. doi: 10.1186/s12943-021-01490-9

 

  1. Au L, Larkin J, Turajlic S. Relatlimab and nivolumab in the treatment of melanoma. Cell. 2022;185(26):4866-4869. doi: 10.1016/j.cell.2022.12.003

 

  1. Tomczak K, Czerwińska P, Wiznerowicz M. The cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1a):A68-A77. doi: 10.5114/wo.2014.47136

 

  1. Xu H, Wang Y, Diao L, et al. UVGD 1.0: A gene-centric database bridging ultraviolet radiation and molecular biology effects in organisms. Int J Radiat Biol. 2019;95(8):1172-1177. doi: 10.1080/09553002.2019.1609127

 

  1. Robinson MD, McCarthy DJ, Smyth GK. EdgeR: A bioconductor package for differential expression analysis of digital gene expression. Data Bioinformatics. 2010;26(1):139-140. doi: 10.1093/bioinformatics/btp616

 

  1. Wu T, Hu E, Xu S, et al. Clusterprofiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141. doi: 10.1016/j.xinn.2021.100141

 

  1. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550. doi: 10.1073/pnas.0506580102

 

  1. The Gene Ontology Consortium. Gene ontology consortium: Going forward. Nucleic Acids Res. 2015;43(D1):D1049-D1056. doi: 10.1093/nar/gku1179

 

  1. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi: 10.1093/nar/28.1.27

 

  1. Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509-W514. doi: 10.1093/nar/gkaa407

 

  1. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401-404. doi: 10.1158/2159-8290.Cd-12-0095

 

  1. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. doi: 10.1126/scisignal.2004088

 

  1. De Bruijn I, Kundra R, Mastrogiacomo B, et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Res. 2023;83(23):3861-3867. doi: 10.1158/0008-5472.Can-23-0816

 

  1. Yuan H, Yan M, Zhang G, et al. CancerSEA: A cancer single-cell state atlas. Nucleic Acids Res. 2019;47(D1):D900-D908. doi: 10.1093/nar/gky939

 

  1. Lamb J, Crawford ED, Peck D, et al. The connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929-1935. doi: 10.1126/science.1132939

 

  1. Lamb J. The connectivity map: A new tool for biomedical research. Nat Rev Cancer. 2007;7(1):54-60. doi: 10.1038/nrc2044

 

  1. Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 Profiles. Cell. 2017;171(6):1437-1452.e17. doi: 10.1016/j.cell.2017.10.049

 

  1. Lopes FC, Sleiman MG, Sebastian K, Bogucka R, Jacobs EA, Adamson AS. UV exposure and the risk of cutaneous melanoma in skin of color: A systematic review. JAMA Dermatol. 2021;157(2):213-219. doi: 10.1001/jamadermatol.2020.4616

 

  1. Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345-358. doi: 10.1038/nrc.2016.37

 

  1. Hu J, Adar S. The cartography of UV-induced DNA damage formation and DNA repair. Photochem Photobiol. 2017;93(1):199-206. doi: 10.1111/php.12668

 

  1. Garmyn M, Young AR, Miller SA. Mechanisms of and variables affecting UVR photoadaptation in human skin. Photochem Photobiol Sci. 2018;17(12):1932-1940. doi: 10.1039/c7pp00430c

 

  1. Goding CR, Arnheiter H. MITF-the first 25 years. Genes Dev. 2019;33(15-16):983-1007. doi: 10.1101/gad.324657.119

 

  1. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155-1228. doi: 10.1152/physrev.00044.2003

 

  1. Xu Y, Carrascosa LC, Yeung YA, et al. An engineered IL15 cytokine mutein fused to an anti-PD1 improves intratumoral T-cell function and antitumor immunity. Cancer Immunol Res. 2021;9(10):1141-1157. doi: 10.1158/2326-6066.Cir-21-0058

 

  1. Bruce WJ, Koljonen JL, Romanelli MR, Khan AU, Neumeister MW. Adjuvant and neoadjuvant therapeutics for the treatment of cutaneous melanoma. Clin Plast Surg. 2021;48(4):651-658. doi: 10.1016/j.cps.2021.06.001
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing