Expression profile and clinical significance of IL-17B/IL-17RB in laryngeal squamous cell carcinoma

Interleukin-17B (IL-17B) and its receptor IL-17 receptor B (IL-17RB) are implicated in several cancers. However, data on their expression profile and clinical significance in laryngeal squamous cell carcinoma (LSCC) remain unavailable. This study aimed to explore the expression profile of IL-17B/IL-17RB in LSCC and to evaluate their predictive and prognostic value in LSCC patients. Tumor and serum samples from 30 LCSS patients and 30 controls were analyzed. Flow cytometry, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC) assessed IL-17RB expression on T helper type 2 (Th2) cells and monocytes, and IL-17B/IL-17RB in serum and tissues. Target gene expression levels at the mRNA and protein levels and their correlation with overall survival (OS) were further analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA; 519 head and neck squamous cell carcinoma [HNSCC] and 44 normal tissues) and the Human Protein Atlas (HPA; 492 RNA samples and 183 HNSCC and normal samples). Result showed weak IL-17RB expression on Th2 cells and monocytes and negative immunoreactivity of IL-17B/IL-17RB in LSCC tissues, consistent with GEPIA and HPA databases. No differences in IL-17B/IL-17RB levels in serum were found in LSCC patients compared with healthy controls. Neither IL-17B nor IL-17RB was correlated with OS. This study provides the first comprehensive evaluation of IL-17B/IL-17RB in LSCC, combining patient samples with bioinformatics datasets. Findings indicate that IL-17B and IL-17RB are not prognostic markers in LSCC, and their potential as serum markers in clinical practice is limited. Further studies are warranted to validate these negative findings and explore alternative roles of IL-17B/IL-17RB in LSCC.
- Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;52(Pt 2):228-240. doi: 10.1016/j.semcancer.2018.01.008
- Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Prim. 2020;6(1):92. doi: 10.1038/s41572-023-00418-5
- Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33. doi: 10.3322/caac.21669
- Bhat AA, Yousuf P, Wani NA, et al. Tumor microenvironment: An evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Signal Transduct Target Ther. 2021;6(1):12. doi: 10.1038/s41392-021-00503-9
- Yu C, Li Q, Zhang Y, Wen ZF, Dong H, Mou Y. Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma. Front Cell Dev Biol. 2022;10:941750. doi: 10.3389/fcell.2022.941750
- Zhao M, Schoenfeld JD, Egloff AM, et al. T cell dynamics with neoadjuvant immunotherapy in head and neck cancer. Nat Rev Clin Oncol. 2025;22(2):83-94. doi: 10.1038/s41571-024-00969-w
- Liu XH, Wang GR, Zhong NN, et al. Multi-omics in immunotherapy research for HNSCC: Present situation and future perspectives. NPJ Precis Oncol. 2025;9(1):93. doi: 10.1038/s41698-025-00886-w
- Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA A Cancer J. 2024;74(1):12-49. doi: 10.3322/caac.21830
- Wang N, Yan H, Wu D, et al. PRMT5/Wnt4 axis promotes lymph-node metastasis and proliferation of laryngeal carcinoma. Cell Death Dis. 2020;11(10):864. doi: 10.1038/s41419-020-03064-x
- Bhatia A, Burtness B. Treating head and neck cancer in the age of immunotherapy: A 2023 update. Drugs. 2023;83(3):217-248. doi: 10.1007/s40265-023-01835-2
- Bruchhage KL, Heinrichs S, Wollenberg B, Pries R. IL-10 in the microenvironment of HNSCC inhibits the CpG ODN induced IFN-α secretion of pDCs. Oncol Lett. 2018;15(3):3985-3990. doi: 10.3892/ol.2018.7772
- Li M, Jin S, Zhang Z, Ma H, Yang X. Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma. Cancer Lett. 2022;527:28-40. doi: 10.1016/j.canlet.2021.12.011
- Yang F, Yuan C, Chen F, et al. Combined IL6 and CCR2 blockade potentiates antitumor activity of NK cells in HPV-negative head and neck cancer. J Exp Clin Cancer Res. 2024;43(1):76. doi: 10.1186/s13046-024-03002-1
- Wang Y, Zhou Q, Liu C, et al. Targeting IL-6/STAT3 signaling abrogates EGFR-TKI resistance through inhibiting beclin-1 dependent autophagy in HNSCC. Cancer Lett. 2024;586:216612. doi: 10.1016/j.canlet.2024.216612
- Fesneau O, Samson KA, Rosales W, et al. IL-12 drives the expression of the inhibitory receptor NKG2A on human tumor-reactive CD8 T cells. Nat Commun. 2024;15(1):9988. doi: 10.1038/s41467-024-54420-w
- Liu C, Wu K, Li C, et al. SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β. J Exp Clin Cancer Res. 2024;43(1):332. doi: 10.1186/s13046-024-03255-w
- Wilson SC, Caveney NA, Yen M, et al. Organizing structural principles of the IL-17 ligand-receptor axis. Nature. 2022;609(7927):622-629. doi: 10.1038/s41586-022-05116-y
- Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: From bench to bedside. Signal Transduct Target Ther. 2023;8(1):402. doi: 10.1038/s41392-023-01620-3
- Saran A, Nishizaki D, Lippman SM, Kato S, Kurzrock R. Interleukin-17: A pleiotropic cytokine implicated in inflammatory, infectious, and malignant disorders. Cytokine Growth Factor Rev. 2025;83:35-44. doi: 10.1016/j.cytogfr.2025.01.002
- Zhang X, Li B, Lan T, et al. The role of interleukin-17 in inflammation-related cancers. Front Immunol. 2024;15:1479505. doi: 10.3389/fimmu.2024.1479505
- Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi: 10.1038/s41577-022-00746-9
- McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892-906. doi: 10.1016/j.immuni.2019.03.021
- Stein S, Henze L, Poch T, et al. IL-17A/F enable cholangiocytes to restrict T cell-driven experimental cholangitis by upregulating PD-L1 expression. J Hepatol. 2021;74(4):919-930. doi: 10.1016/j.jhep.2020.10.035
- Hagner M, Albrecht M, Guerra M, et al. IL-17A from innate and adaptive lymphocytes contributes to inflammation and damage in cystic fibrosis lung disease. Eur Respir J. 2021;57(6):1900716. doi: 10.1183/13993003.00716-2019
- Rastrick J, Edwards H, Ferecskó AS, et al. The roles of interleukin (IL)-17A and IL-17F in hidradenitis suppurativa pathogenesis: Evidence from human in vitro preclinical experiments and clinical samples. Br J Dermatol. 2025;192(4):660-671. doi: 10.1093/bjd/ljae442
- Song J, Zhang H, Tong Y, et al. Molecular mechanism of interleukin-17A regulating airway epithelial cell ferroptosis based on allergic asthma airway inflammation. Redox Biol. 2023;68:102970. doi: 10.1016/j.redox.2023.102970
- Bie Q, Song H, Chen X, et al. IL-17B/IL-17RB signaling cascade contributes to self-renewal and tumorigenesis of cancer stem cells by regulating Beclin-1 ubiquitination. Oncogene. 2021;40(12):2200-2216. doi: 10.1038/s41388-021-01699-4
- Huang SC, Wei PC, Hwang-Verslues WW, et al. TGF- β1 secreted by Tregs in lymph nodes promotes breast cancer malignancy via up-regulation of IL-17RB. EMBO Mol Med. 2017;9(12):1660-1680. doi: 10.15252/emmm.201606914
- Ren L, Xu Y, Liu C, Wang S, Qin G. IL-17RB enhances thyroid cancer cell invasion and metastasis via ERK1/2 pathway-mediated MMP-9 expression. Mol Immunol. 2017;90:126-135. doi: 10.1016/j.molimm.2017.06.034
- Wu HH, Tsai LH, Huang CK, et al. Characterization of initial key steps of IL-17 receptor B oncogenic signaling for targeted therapy of pancreatic cancer. Sci Transl Med. 2021;13(583):eabc2823. doi: 10.1126/scitranslmed.abc2823
- Yang YF, Lee YC, Lo S, et al. A positive feedback loop of IL-17B-IL-17RB activates ERK/β-catenin to promote lung cancer metastasis. Cancer Lett. 2018;422:44-55. doi: 10.1016/j.canlet.2018.02.037
- Lee WH, Chen X, Liu IJ, et al. Structural basis of interleukin- 17B receptor in complex with a neutralizing antibody for guiding humanization and affinity maturation. Cell Rep. 2022;41(4):111555. doi: 10.1016/j.celrep.2022.111555
- Pastwińska J, Karwaciak I, Karaś K, Grabarczyk D, Sałkowska A, Ratajewski M. IL-17B inhibits hepatocellular carcinoma cell proliferation. Arch Immunol Ther Exp (Warsz). 2025;73(1):1-10. doi: 10.2478/aite-2025-0020
- Bruni D, Angell HK, Galon J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20(11):662-680. doi: 10.1038/s41568-020-0285-7
- Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98-W102. doi: 10.1093/nar/gkx247
- Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352):eaan2507. doi: 10.1126/science.aan2507
- Mantani PT, Vallejo J, Ljungcrantz I, Nilsson J, Björkbacka H, Fredrikson GN. Interleukin-25 reduces Th17 cells and inflammatory responses in human peripheral blood mononuclear cells. Hum Immunol. 2018;79(9):685-692. doi: 10.1016/j.humimm.2018.06.008
- Wu HH, Hwang-Verslues WW, Lee WH, et al. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exp Med. 2015;212(3):333-349. doi: 10.1084/jem.20141702
- Bie Q, Sun C, Gong A, et al. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 2016;6:25447. doi: 10.1038/srep25447
- Tsai LH, Hsu KW, Chiang CM, et al. Targeting interleukin-17 receptor B enhances gemcitabine sensitivity through downregulation of mucins in pancreatic cancer. Sci Rep. 2020;10(1):17817. doi: 10.1038/s41598-020-73659-z
- Wang H, Liu Y, Yang L, et al. Differential roles of IL-17B and IL-17RB in colorectal cancer: Correlation with immune infiltration and prognosis. Pathol Res Pract. 2025;268:155847. doi: 10.1016/j.prp.2025.155847