AccScience Publishing / ARNM / Online First / DOI: 10.36922/ARNM025410053
SHORT COMMUNICATION

Mini tandem accelerator-based neutron or gamma-ray generator for radiotherapy

Ka-Ngo Leung1,2* James K. Leung2
Show Less
1 Department of Nuclear Engineering, University of California, Berkeley, California, United States of America
2 Berkion Technology LLC, Berkeley, California, United States of America
Received: 7 October 2025 | Revised: 28 November 2025 | Accepted: 25 December 2025 | Published online: 28 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

A miniature tandem accelerator is being developed to operate as a neutron or gamma-ray tube for radiotherapy applications. This new tool is operated with a high-frequency alternating current 1 mega-volt (MV) high-voltage pulser and a plasma-less H-/D- ion source, making it suitable to generate a high flux of fast or epithermal neutrons or high-energy gamma rays through the d-7Li, p-7Li or p-19F nuclear reactions. With the proper design, these mini tandem accelerator tubes can be modified for neutron, gamma-ray, or boron neutron capture therapy brachytherapy applications. By increasing the stripper foil voltage higher than 10 MV, proton brachytherapy can be performed for the treatment of small cancer tumors without the use of large and expensive high-energy accelerator systems.

Keywords
Tandem accelerator
Fast-neutron
Epithermal neutron
Gamma ray
Proton therapy
Brachytherapy
Boron neutron capture therapy
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Bailey TL, Callahan LK, Clark AM, Nelson AD, Wood L, Collon P. The use of second foil stripping in tandem accelerators. Nucl Instrum Methods Phys Res B. 2024;557:165532. doi: 10.1016/j.nimb.2024.165532

 

  1. Leung KN. Production of H- ions by thermal desorption process. AIP Adv. 2023:13(7):075123. doi: 10.1063/5.0162487

 

  1. Leung KN. New mini neutron tubes with multiple applications. J Nucl Eng. 2024;5:197-208. doi: 10.3390/jne5030014

 

  1. Shima K, Ishii S, Takahashi T, Sugai I. Optimum thickness of carbon stripper foils in tandem accelerator in view of transmission and lifetime. Nucl Instrum Methods Phys Res A. 2001;460(2-3):233-238. doi: 10.1016/S0168-9002(00)01074-3

 

  1. Lau TP, Lou TP, Leung KN, Vujic J, Hahto S. D-D and D-T Brachytherapy Neutron Sources, Lawrence Berkeley National Laboratory Report (LBNL-49964 abs.). Available from: https://escholarship.org/uc/item/5rp4g4jc

 

  1. Lee CL, Zhou XL. Thick target neutron yields for the 7Li(p,n)7 Be reaction near threshold. Nucl Instrum Meth Phys Res B. 1999;152:1-11. doi: 10.1016/S0168-583X(99)00026-9

 

  1. Leung KN, Leung JK. Cancer radiotherapy with mini neutron/gamma-ray generators. Adv Radiother Nucl Med. 2024;2:3920. doi: 10.36922/arnm.3920

 

  1. Micklich BJ, Smith DL, Massey TN, Fink CL, Ingram D. Measurement of thick-target high- energy γ-ray yields from the 19F(p,αγ)16 O reaction. Nucl Instrum Methods Phys Res A. 2003;505:1-4. doi: 10.1016/S0168-9002(03)01006-4

 

  1. Leung KN. Mini neutron tubes for boron neutron capture therapy and neutron imaging applications. Adv Radiother Nucl Med. 2025. doi: 10.36922/ARNM025290035

 

  1. Saito T, Katabuchi T, Hales B, Igashira M. Measurement of thick-target gamma-ray production yields of the 7Li(p, p′)7 Li and 7Li(p, γ)8 Be reactions in the near-threshold energy region for the 7Li(p, n)7 Be reaction. J Nucl Sci Technol. 2016;54(2):253-259. doi: 10.1080/00223131.2016.1255576

 

  1. The NIST PSTAR Database. Available from: https://physics. nist.gov/physrefdata/star/text/pstar.html
Share
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Print ISSN: 3060-8554, Published by AccScience Publishing