AccScience Publishing / ARNM / Online First / DOI: 10.36922/ARNM025370047
ORIGINAL RESEARCH ARTICLE

Radiotherapy using diagnostic computed tomography scans: A phantom-based end-to-end evaluation

Fabian Krause1* Stephan Wolff2 Sören Semrau1 Frank-André Siebert1
Show Less
1 Department of Radiotherapy, University Medical Center Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
2 Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
Received: 13 September 2025 | Revised: 3 November 2025 | Accepted: 25 November 2025 | Published online: 9 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Palliative patients receiving radiotherapy often experience significant pain. Nevertheless, they must be transported for a planning computed tomography (CT) scan and endure additional waiting times because treatment planning is time-consuming. New artificial intelligence (AI)-assisted radiotherapy devices enable simplified workflows. Using cone-beam CT data, an adaptive treatment plan based on the current patient anatomy can be generated within minutes. This study examines how technical innovations can shorten radiation treatment planning using diagnostic images instead of planning CT (pCT) scans. The entire treatment planning chain was evaluated using an Alderson phantom in an end-to-end test with dose measurements for an AI-supported adaptive workflow. Different diagnostic CT acquisitions were used, and the resulting dose calculations were compared with those obtained from a pCT calibrated for radiotherapy. In Report 24, the International Commission on Radiation Units and Measurements (ICRU) specifies a tolerance for radiotherapy dose delivery of ±5% relative to the prescribed dose. To evaluate if an adaptive workflow with diagnostic images on the Varian’s Ethos system (v1.1) meets these requirements, ionization chamber measurements in a phantom were compared to planned doses. Comparison of the results showed that the requirements of ICRU Report 24 were met. When diagnostic CT images were used instead of a dedicated treatment pCT, increased dose deviations of up to 2% were observed, although these remained within the ICRU tolerance. The end-to-end test presented here provides a practical approach to assessing the impact of using diagnostic CT data in adaptive treatment planning. The findings indicate that the observed dose deviations remain within the 5% limit defined by ICRU Report 24.

Keywords
End-to-end study
Ethos
Adaptive radiotherapy
Simulation-free radiation
Funding
None.
Conflict of interest
Frank-André Siebert is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Etkind SN, Bone AE, Gomes B, et al. How many people will need palliative care in 2040? Past trends, future projections and implications for service. BMC Med. 2017;15:102. doi: 10.1186/s12916-017-0860-2

 

  1. Dennis K, Harris G, Kamel R, et al. Rapid access palliative radiotherapy programmes. Clin Oncol (R Coll Radiol). 2020;32(11):704-712. doi: 10.1016/j.clon.2020.08.002

 

  1. Lutz S, Balboni T, Jones J, et al. Palliative radiation therapy for bone metastases: Update of an ASTRO evidence-based guideline. Pract Radiat Oncol. 2017;7(1):4-12. doi: 10.1016/j.prro.2016.08.001

 

  1. Van Tol FR, Suijkerbuijk KPM, Choi D, Verkooijen HM, Oner FC, Verlaan JJ. The importance of timely treatment for quality of life and survival in patients with symptomatic spinal metastases. Eur Spine J. 2020;29:3170-3178. doi: 10.1007/s00586-020-06599-x

 

  1. Sibolt P, Andersson LM, Calmels L, et al. Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region. Phys Imaging Radiat Oncol. 2021;17:1-7. doi: 10.1016/j.phro.2020.12.004

 

  1. Wegener S, Exner F, Weick S, et al. Prospective risk analysis of the online-adaptive artificial intelligence-driven workflow using the Ethos treatment system. Z Med Phys. 2024;34(3):384-396 doi: 10.1016/j.zemedi.2022.11.004

 

  1. Nelissen KJ, Versteijne E, Senan S, et al. Same-day adaptive palliative radiotherapy without prior CT simulation: Early outcomes in the FAST-METS study. Radiother Oncol. 2023;182:109538. doi: 10.1016/j.radonc.2023.109538

 

  1. Schuler T, Roderick S, Wong S, et al. Real-world implementation of simulation-free radiation therapy (SFRT-1000): A propensity score-matched analysis of 1000 consecutive palliative courses delivered in routine care. Int J Radiat Oncol Biol Phys. 2025;121(3):585-595. doi: 10.1016/j.ijrobp.2024.09.041

 

  1. Yu L, Zhao J, Xia F, et al. Technical note: First implementation of a one-stop solution of radiotherapy with full-workflow automation based on CT-linac combination. Med Phys. 2023;50(5):3117-3126. doi: 10.1002/mp.16324

 

  1. Howell DD, James JL, Hartsell WF, et al. Single-fraction radiotherapy versus multifraction radiotherapy for palliation of painful vertebral bone metastases-Equivalent efficacy, less toxicity, more convenient: A subset analysis of radiation therapy oncology group trial 97-14. Cancer. 2013;119(4):888-896. doi: 10.1002/cncr.27616

 

  1. Hartsell WF, Scott CB, Bruner DW, et al. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst. 2005;97(11):798-804. doi: 10.1093/jnci/dji139

 

  1. O’Neil M, Laba JM, Nguyen TK, et al. Diagnostic CT-enabled planning (DART): Results of a randomized trial in palliative radiation therapy. Int J Radiat Oncol Biol Phys. 2024;120(1):69-76. doi: 10.1016/j.ijrobp.2024.03.005

 

  1. Kawamura M, Kamomae T, Yanagawa M, et al. Revolutionizing radiation therapy: The role of AI in clinical practice. J Radiat Res. 2024;65(1):1-9. doi: 10.1093/jrr/rrad090

 

  1. Koenig L, Derksen A, Papenberg N, Haas B. Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints. Radiat Oncol. 2016;11:122. doi: 10.1186/s13014-016-0697-4

 

  1. Giacometti V, King RB, Agnew CE, et al. An evaluation of techniques for dose calculation on cone beam computed tomography. Br J Radiol. 2019;92(1096):20180383. doi: 10.1259/bjr.20180383

 

  1. Glober G, Kubli A, Kielbasa J, et al. Technical report: Diagnostic scan-based planning (DSBP), a method to improve the speed and safety of radiation therapy for the treatment of critically ill patients. Pract Radiat Oncol. 2020;10(5):e425-e431. doi: 10.1016/j.prro.2020.01.009

 

  1. Ho, QA, Smith-Raymond L, Locke A, Robbins JR. Dosimetry comparison of palliative radiation plans generated from available diagnostic CT images versus dedicated CT simulation for inpatients. Cureus. 2021;13(9):e17799. doi: 10.7759/cureus.17799

 

  1. Nelissen KJ, Versteijne E, Senan S, Hoffmans D, Slotman BJ, Verbakel WFA. Evaluation of a workflow for cone-beam CT-guided online adaptive palliative radiotherapy planned using diagnostic CT scans. J Appl Clin Med Phys. 2023;24(3):e13841. doi: 10.1002/acm2.13841

 

  1. Larjavaara S, Strengell S, Seppälä T, Tenhunen M, Anttonen A. Palliative intensity modulated radiotherapy of bone metastases based on diagnostic instead of planning computed tomography scans. Phys Imaging Radiat Oncol. 2023;27:100456. doi: 10.1016/j.phro.2023.100456

 

  1. ICRU International Commission on Radiation Units and Measurements. Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures. ICRU Report 24. Bethesda, MD: ICRU; 1976.

 

  1. Alderson SW, Lanzl LH, Rollins M, Spira J. An instrumented phantom system for analog computation of treatment plans. Am J Roentgenol Radium Ther Nucl Med. 1962;87:185-195.

 

  1. Nelson G, Pigrish V, Sarkar V, Su FC, Salter B. Technical note: The use of DirectDensityTM and dual‐energy CT in the radiation oncology clinic. J Appl Clin Med Phys. 2019;20(3):125-131. doi: 10.1002/acm2.12546

 

  1. Mao W, Riess J, Kim J, et al. Evaluation of auto-contouring and dose distributions for online adaptive radiation therapy of patients with locally advanced lung cancers. Pract Radiat Oncol. 2022;12(4):e329-e338. doi: 10.1016/j.prro.2021.12.017

 

  1. Prunaretty J, Mekki F, Laurent PI, et al. Clinical feasibility of Ethos auto-segmentation for adaptive whole-breast cancer treatment. Front Oncol. 2024;14:1507806. doi: 10.3389/fonc.2024.1507806

 

  1. Pokharel S, Pacheco A, Tanner SM. Assessment of efficacy in automated plan generation for Varian Ethos intelligent optimization engine. J Appl Clin Med Phys. 2022;23(4):e13539. doi: 10.1002/acm2.13539

 

  1. Kubiatowicz A, Sherer M, Owaga A, Sharabi A, Ray X. Assessing dosimetric benefit from daily online adaptive radiation therapy for esophageal cancer. J Appl Clin Med Phys. 2025;26(10):e70244. doi: 10.1002/acm2.70244

 

  1. Koo T, Chung JB, Eom KY, Kim IH, Kim JS. Dosimetric effects of the acuros XB and anisotropic analytical algorithm on volumetric modulated arc therapy planning for prostate cancer using an endorectal balloon. Radiat Oncol. 2015;10:48. doi: 10.1186/s13014-015-0346-3

 

  1. Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38(4):2208-2221. doi: 10.1118/1.3567146

 

  1. Castro P, García-Vicente F, Mínguez C, et al. Study of the uncertainty in the determination of the absorbed dose to water during external beam radiotherapy calibration. J Appl Clin Med Phys. 2008;9(1):70-86. doi: 10.1120/jacmp.v9i1.2676

 

  1. Johnson D, Li HH, Kimler BF. Dosimetry: Was and is an absolute requirement for quality radiation research. Radiat Res. 2024;202(2):102-129. doi: 10.1667/rade-24-00107.1

 

  1. Mijnheer BJ, Battermann JJ, Wambersie A. What degree of accuracy is required and can be achieved in photon and neutron therapy? Radiother Oncol. 1987;8(3):237-252. doi: 10.1016/s0167-8140(87)80247-5

 

  1. Thwaites D. Accuracy required and achievable in radiotherapy dosimetry: Have modern technology and techniques changed our views? J Phys Conf Ser. 2013;444:012006. doi: 10.1088/1742-6596/444/1/012006

 

  1. Schmitt D, Blanck O, Gauer T, et al. Technological quality requirements for stereotactic radiotherapy: Expert review group consensus from the DGMP working group for physics and technology in stereotactic radiotherapy. Strahlenther Onkol. 2020;196:421-443. doi: 10.1007/s00066-020-01583-2

 

  1. Krause F, Risske F, Bohn S, Delaperriere M, Dunst J, Siebert FA. End-to-end test for computed tomography-based high-dose-rate brachytherapy. J Contemp Brachytherapy. 2018;10(6):551-558. doi: 10.5114/jcb.2018.81026

 

  1. Lehmann J, Alves A, Dunn L, et al. Dosimetric end-to-end tests in a national audit of 3D conformal radiotherapy. Phys Imaging Radiat Oncol. 2018;6:5-11. doi: 10.1016/j.phro.2018.03.006

 

  1. Christian E, Adamietz IA, Willich N, et al. Radiotherapy in oncological emergencies--final results of a patterns of care study in Germany, Austria and Switzerland. Acta Oncol. 2008;47(1):81-89. doi: 10.1080/02841860701481554

 

  1. Nierer L, Walter F, Niyazi M, et al. Radiotherapy in oncological emergencies: Fast-track treatment planning. Radiat Oncol. 2020;15:215. doi: 10.1186/s13014-020-01657-6

 

  1. MacDonald RL, Fallone C, Chytyk‑Praznik K, Robar JL, Cherpak A. The feasibility of CT simulation‑free adaptive radiation therapy. J Appl Clin Med Phys. 2025;25(9):e14438. doi: 10.1002/acm2.14438

 

  1. Groot Koerkamp ML, Bol GH, Kroon PS, et al. Bringing online adaptive radiotherapy to a standard C-arm linac. Phys Imaging Radiat Oncol. 2024;31:100597. doi: 10.1016/j.phro.2024.100597

 

  1. Winkel D, Bol GH, Kroon PS, et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 2019;18:54-59. doi: 10.1016/j.ctro.2019.04.001

 

  1. Klüter S. Technical design and concept of a 0.35 T MR‑Linac. Clin Transl Radiat Oncol. 2019;18:98‑101. doi: 10.1016/j.ctro.2019.04.007
Share
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Print ISSN: 3060-8554, Published by AccScience Publishing