AccScience Publishing / ARNM / Online First / DOI: 10.36922/ARNM025360045
REVIEW ARTICLE

Nuclear medicine imaging techniques in yttrium90 microsphere radioembolization for liver tumors: Clinical perspectives and advances

Runjun Yang1,2,3,4 Akram Al‑Ibraheem5,6 Hongcheng Shi1,2,3,4*
Show Less
1 Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
2 Shanghai Institute of Medical Imaging, Shanghai, China
3 Institute of Nuclear Medicine, Fudan University, Shanghai, China
4 Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
5 Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman, Jordan
6 Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Amman, Jordan
Received: 1 September 2025 | Revised: 19 November 2025 | Accepted: 25 November 2025 | Published online: 4 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Yttrium-90 (90Y) microsphere radioembolization (RE) has become an important locoregional therapy for unresectable primary and metastatic liver tumors, supported by advances in catheter-based delivery and quantitative nuclear medicine imaging. Successful treatment requires coordinated multidisciplinary collaboration, with nuclear medicine playing a central role from initial patient selection through post-treatment verification and follow-up assessment. Pre-treatment imaging—particularly 18F-FDG positron emission tomography/computed tomography (PET/CT) and pathology-specific non-FDG tracers—supports staging, characterization of tumor biology, and prognostic stratification. In parallel, 99mTc macroaggregated albumin or Single Photon Emission Computed Tomography (SPECT) mapping enables identification of extrahepatic shunting, lung dose estimation, and predictive intrahepatic dose modeling, thereby guiding treatment feasibility and personalized dosimetry. Following microsphere administration, post-therapy imaging with 90Y PET/CT, Bremsstrahlung SPECT/CT, or hybrid PET/magnetic resonance imaging provides essential confirmation of microsphere distribution and supports voxel-based dose-response evaluation. Emerging quantitative metrics, including metabolic tumor volume, total lesion glycolysis, and radiomics-derived features, offer additional prognostic insight and may refine individualized treatment planning. This review synthesizes current evidence on the clinical utility, technical considerations, and evolving applications of nuclear medicine imaging throughout the 90Y-RE workflow. It highlights practical decision-making principles relevant to nuclear medicine physicians, interventional radiologists, oncologists, and medical physicists, with the objective of supporting optimized patient selection, improving dosimetric accuracy, and enhancing post-therapy response evaluation in liver-directed radionuclide therapy.

Keywords
Yttrium-90 microspheres
Radioembolization
Nuclear medicine imaging
Positron emission tomography
Single photon emission computed tomography
Funding
None.
Conflict of interest
Hongcheng Shi serves the Editor-in-Chief of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Walker LA. Radioactive yttrium 90: A review of its properties, biological behavior, and clinical uses. Acta Radiol Ther Phys Biol. 1964;2:302-314. doi: 10.1080/02841866409134063

 

  1. Briody H, Duong D, Yeoh SW, et al. Radioembolization for treatment of hepatocellular carcinoma: Current evidence and patterns of utilization. J Vasc Interv Radiol. 2023;34(7):1200-1213. doi: 10.1016/j.jvir.2023.03.020

 

  1. Kennedy A, Nag S, Salem R, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: A consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys. 2007;68(1):13-23. doi: 10.1016/j.ijrobp.2006.11.060

 

  1. Salem R, Padia SA, Lam M, et al. Clinical, dosimetric, and reporting considerations for Y-90 glass microspheres in hepatocellular carcinoma: Updated 2022 recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging. 2023;50(2): 328-343. doi: 10.1007/s00259-022-05956-w

 

  1. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on acute-on-chronic liver failure. J Hepatol. 2023;79(2):461-491. doi: 10.1016/j.jhep.2023.04.021

 

  1. Vilgrain V, Pereira H, Assenat E, et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): An open-label randomised controlled phase 3 trial. Lancet Oncol. 2017;18(12):1624-1636. doi: 10.1016/S1470-2045(17)30683-6

 

  1. Wasan HS, Gibbs P, Sharma NK, et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): A combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol. 2017;18(9):1159-1171. doi: 10.1016/S1470-2045(17)30457-6

 

  1. Pavel M, Baudin E, Couvelard A, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157-176. doi: 10.1159/000335597

 

  1. Edeline J, Touchefeu Y, Guiu B, et al. Radioembolization plus chemotherapy for first-line treatment of locally advanced intrahepatic cholangiocarcinoma: A phase 2 clinical trial. JAMA Oncol. 2020;6(1):51-59. doi: 10.1001/jamaoncol.2019.3702

 

  1. Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol. 2014;4:198. doi: 10.3389/fonc.2014.00198

 

  1. Laidlaw GL, Johnson GE. Recognizing and managing adverse events in Y-90 radioembolization. Semin Intervent Radiol. 2021;38(4):453-459. doi: 10.1055/s-0041-1735617

 

  1. Riaz A, Lewandowski RJ, Kulik LM, et al. Complications following radioembolization with yttrium-90 microspheres: A comprehensive literature review. J Vasc Interv Radiol. 2009;20(9):1121-1130. doi: 10.1016/j.jvir.2009.05.030

 

  1. Facciorusso A, Serviddio G, Muscatiello N. Transarterial radioembolization vs chemoembolization for hepatocarcinoma patients: A systematic review and meta-analysis. World J Hepatol. 2016;8(18):770-778. doi: 10.4254/wjh.v8.i18.770

 

  1. Şener N, Yakupoğlu A. Yttrium-90 transarterial radioembolization and capecitabine in hepatocellular carcinoma with portal vein involvement. Medicine (Baltimore). 2023;102(35):e34674. doi: 10.1097/MD.0000000000034674

 

  1. Salem R, Gordon AC, Mouli S, et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2016;151(6):1155-1163. doi: 10.1053/j.gastro.2016.08.029

 

  1. Chow PKH, Gandhi M, Tan S, et al. SIRveNIB: Selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol. 2018;36(19):1913-1921. doi: 10.1200/JCO.2017.76.0892

 

  1. Weber M, Lam M, Chiesa C, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2022;49(5):1682-1699. doi: 10.1007/s00259-021-05600-z

 

  1. Schmidt GP, Paprottka P, Jakobs TF, et al. FDG-PET-CT and whole-body MRI for triage in patients planned for radioembolisation therapy. Eur J Radiol. 2012;81(3):e269-e276. doi: 10.1016/j.ejrad.2011.02.018

 

  1. Levillain H, Bagni O, Deroose CM, et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging. 2021;48(5):1570-1584. doi: 10.1007/s00259-020-05163-5

 

  1. Lin Y, Gao H, Zheng J, Al-Ibraheem A, Hu P, Shi H. Clinical explorations of [68Ga] Ga-FAPI-04 and [18F] FDG dual-tracer total-body PET/CT and PET/MR imaging. Semin Nucl Med. 2024;54(6):904-913. doi: 10.1053/j.semnuclmed.2024.09.009

 

 

  1. Miao Y, Feng R, Guo R, et al. Utility of [68Ga]FAPI-04 and [18F]FDG dual-tracer PET/CT in the initial evaluation of gastric cancer. Eur Radiol. 2023;33(6):4355-4366. doi: 10.1007/s00330-022-09321-1

 

  1. Sharma A, Muralitharan M, Ramage J, et al. Current management of neuroendocrine tumour liver metastases. Curr Oncol Rep. 2024;26(9):1070-1084. doi: 10.1007/s11912-024-01559-w

 

  1. Cao J, Srinivas-Rao S, Mroueh N, et al. Cholangiocarcinoma imaging: from diagnosis to response assessment. Abdom Radiol (NY). 2024;49(5):1699-1715. doi: 10.1007/s00261-024-04267-y

 

  1. Sänger PW, Freesmeyer M. Early dynamic 68Ga-DOTA-D-Phe1-Tyr3-octreotide PET/CT in patients with hepatic metastases of neuroendocrine tumors. Clin Nucl Med. 2016;41(6):447-453. doi: 10.1097/RLU.0000000000001154

 

  1. Zhou Y, Li L, Wang H, et al. Heterogeneous uptake of 68 Ga-DOTATATE and 18 F-FDG in initial diagnosed neuroendocrine tumors patients: Which patients are suitable for dual-tracer PET imaging. Clin Nucl Med. 2024;49(6):516-520. doi: 10.1097/RLU.0000000000005231

 

  1. Chan DL, Pavlakis N, Schembri GP, et al. Dual somatostatin receptor/FDG PET/CT imaging in metastatic neuroendocrine tumours: Proposal for a novel grading scheme with prognostic significance. Theranostics. 2017;7(5):1149-1158. doi: 10.7150/thno.18068

 

  1. Shi X, Xing H, Yang X, et al. Comparison of PET imaging of activated fibroblasts and 18F-FDG for diagnosis of primary hepatic tumours: A prospective pilot study. Eur J Nucl Med Mol Imaging. 2021;48(5):1593-1603. doi: 10.1007/s00259-020-05070-9

 

  1. Manuppella F, Pisano G, Taralli S, Caldarella C, Calcagni ML. Diagnostic performances of PET/CT using fibroblast activation protein inhibitors in patients with primary and metastatic liver tumors: A comprehensive literature review. Int J Mol Sci. 2024;25(13):7197. doi: 10.3390/ijms25137197

 

  1. Guo W, Pang Y, Yao L, et al. Imaging fibroblast activation protein in liver cancer: A single-center post hoc retrospective analysis to compare [68Ga]Ga-FAPI-04 PET/CT versus MRI and [18F]-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(5):1604-1617. doi: 10.1007/s00259-020-05095-0

 

  1. Kucuk ON, Soydal C, Araz M, Bilgic S, Ibis E. Prognostic importance of 18F-FDG uptake pattern of hepatocellular cancer patients who received SIRT. Clin Nucl Med. 2013;38(7):e283-e289. doi: 10.1097/RLU.0b013e3182867f17

 

  1. Abuodeh Y, Naghavi AO, Ahmed KA, et al. Prognostic value of pre-treatment F-18-FDG PET-CT in patients with hepatocellular carcinoma undergoing radioembolization. World J Gastroenterol. 2016;22(47):10406-10414. doi: 10.3748/wjg.v22.i47.10406

 

  1. Kim DY, Lee HW, Kang W, Kim GM, Won JY, Yun M. Metabolic activity assessment by 18 F-fluorodeoxyglucose positron emission tomography in patients with hepatocellular carcinoma undergoing Yttrium-90 transarterial radioembolization. J Gastroenterol Hepatol. 2021;36(6):1679-1684. doi: 10.1111/jgh.15357

 

  1. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50 Suppl 1:11S-20S. doi: 10.2967/jnumed.108.057182

 

  1. Larson SM, Erdi Y, Akhurst T, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging. 1999;2(3):159-171. doi: 10.1016/s1095-0397(99)00016-3

 

  1. Seraj SM, Zadeh MZ, Werner TJ, et al. Pretreatment volumetric parameters of FDG-PET predict the survival after Yttrium-90 radio-embolization in metastatic liver disease. Am J Nucl Med Mol Imaging. 2019;9(5):248-254.

 

  1. Wong CY, Gates VL, Tang B, et al. Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography predicts extrahepatic metastatic potential of colorectal metastasis: A practical guide for yttrium-90 microsphere liver-directed therapy. Cancer Biother Radiopharm. 2010;25(2):233-236. doi: 10.1089/cbr.2009.0735

 

  1. Piñeiro-Fiel M, Moscoso A, Pubul V, Ruibal Á, Silva- Rodríguez J, Aguiar P. A systematic review of PET textural analysis and radiomics in cancer. Diagnostics (Basel). 2021;11(2):380. doi: 10.3390/diagnostics11020380

 

  1. Blanc-Durand P, Van Der Gucht A, Jreige M, et al. Signature of survival: A 18F-FDG PET based whole-liver radiomic analysis predicts survival after 90Y-TARE for hepatocellular carcinoma. Oncotarget. 2018;9(4):4549-4558. doi: 10.18632/oncotarget.23423

 

  1. Ingenerf M, Grawe F, Winkelmann M, et al. Neuroendocrine liver metastases treated using transarterial radioembolization: Identification of prognostic parameters at 68Ga-DOTATATE PET/CT. Diagn Interv Imaging. 2024;105(1):15-25. doi: 10.1016/j.diii.2023.06.007

 

  1. Wagemans M, Braat A, van Rooij R, et al. Lung mean dose prediction in transarterial radioembolization (TARE): Superiority of [166Ho]-scout over [99mTc]MAA in a prospective cohort study. Cardiovasc Intervent Radiol. 2024;47(4):443-450. doi: 10.1007/s00270-023-03656-y

 

  1. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J Hepatol. 2025;82(2):315-374. doi: 10.1016/j.jhep.2024.08.028

 

  1. Georgiou MF, Kuker RA, Studenski MT, Ahlman PP, Witte M, Portelance L. Lung shunt fraction calculation using 99mTc-MAA SPECT/CT imaging for 90Y microsphere selective internal radiation therapy of liver tumors. EJNMMI Res. 2021;11(1):96. doi: 10.1186/s13550-021-00837-z

 

  1. Dittmann H, Kopp D, Kupferschlaeger J, et al. A prospective study of quantitative SPECT/CT for evaluation of lung shunt fraction before SIRT of liver tumors. J Nucl Med. 2018;59(9):1366-1372. doi: 10.2967/jnumed.117.205203

 

  1. Allred JD, Niedbala J, Mikell JK, Owen D, Frey KA, Dewaraja YK. The value of 99mTc-MAA SPECT/CT for lung shunt estimation in 90Y radioembolization: A phantom and patient study. EJNMMI Res. 2018;8(1):50. doi: 10.1186/s13550-018-0402-8

 

  1. Young S, Flanagan S, D’Souza D, et al. Lung shunt fraction calculations before Y-90 transarterial radioembolization: Comparison of accuracy and clinical significance of planar scintigraphy and SPECT/CT. Diagn Interv Imaging. 2023;104(4):185-191. doi: 10.1016/j.diii.2022.12.002

 

  1. Torkian P, Ragulojan R, Woodhead GJ, et al. Lung shunt fraction quantification methods in radioembolization: What you need to know. Br J Radiol. 2022;95(1139):20220470. doi: 10.1259/bjr.20220470

 

  1. Stella M, van Rooij R, Lam M, de Jong H, Braat A. Lung dose measured on postradioembolization 90Y PET/ CT and incidence of radiation pneumonitis. J Nucl Med. 2022;63(7):1075-1080. doi: 10.2967/jnumed.121.263143

 

  1. Kappadath SC, Lopez BP, Salem R, Lam MGEH. Reassessment of the lung dose limits for radioembolization. Nucl Med Commun. 2021;42(10):1064-1075. doi: 10.1097/MNM.0000000000001439

 

  1. Chiesa C, Sjogreen-Gleisner K, Walrand S, et al. EANM dosimetry committee series on standard operational procedures: A unified methodology for 99mTc- MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys. 2021;8(1):77. doi: 10.1186/s40658-021-00394-3

 

  1. Bastiaannet R, van Roekel C, Kunnen B, Lam M, de Jong H. Is Diffusion-weighted MRI really superior to PET/CT in predicting survival after radioembolization. Radiology. 2018;289(1):274-275. doi: 10.1148/radiol.2018181348

 

  1. Ahmadzadehfar H, Sabet A, Biermann K, et al. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med. 2010;51(8):1206-1212. doi: 10.2967/jnumed.109.074559

 

  1. Ahmadzadehfar H, Duan H, Haug AR, Walrand S, Hoffmann M. The role of SPECT/CT in radioembolization of liver tumours. Eur J Nucl Med Mol Imaging. 2014;41 Suppl 1:S115-S124. doi: 10.1007/s00259-013-2675-5

 

  1. Naymagon S, Warner RR, Patel K, et al. Gastroduodenal ulceration associated with radioembolization for the treatment of hepatic tumors: An institutional experience and review of the literature. Dig Dis Sci. 2010;55(9):2450-2458. doi: 10.1007/s10620-010-1156-y

 

  1. Sabet A, Ahmadzadehfar H, Muckle M, et al. Significance of oral administration of sodium perchlorate in planning liver-directed radioembolization. J Nucl Med. 2011;52(7):1063-1067. doi: 10.2967/jnumed.110.083626

 

  1. Bailey JJ, Dewaraja Y, Hubers D, Srinivasa RN, Frey KA. Biodistribution of 99mTc-MAA on SPECT/CT performed for 90Y radioembolization therapy planning: A pictorial review. Clin Transl Imaging. 2017;5(5):473-485. doi: 10.1007/s40336-017-0245-8

 

  1. Lenoir L, Edeline J, Rolland Y, et al. Usefulness and pitfalls of MAA SPECT/CT in identifying digestive extrahepaticuptake when planning liver radioembolization. Eur J Nucl Med Mol Imaging. 2012;39(5):872-880. doi: 10.1007/s00259-011-2033-4

 

  1. D’Abadie P, Walrand S, Lhommel R, Hesse M, Jamar F. A Theranostic approach in SIRT: Value of pre-therapy imaging in treatment planning. J Clin Med. 2022;11(23):7245. doi: 10.3390/jcm11237245

 

  1. Garin E, Lenoir L, Rolland Y, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: Preliminary results. J Nucl Med. 2012;53(2):255-263. doi: 10.2967/jnumed.111.094235

 

  1. Hamami ME, Poeppel TD, Müller S, et al. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. J Nucl Med. 2009;50(5):688-692. doi: 10.2967/jnumed.108.058347

 

  1. Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: The MIRD equations for dose calculations. J Nucl Med. 2006;47(7):1209-1211.

 

  1. Chiesa C, Mira M, Maccauro M, et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: Development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging. 2015;42(11):1718-1738. doi: 10.1007/s00259-015-3068-8

 

  1. Salem R, Johnson GE, Kim E, et al. Yttrium-90 radioembolization for the treatment of solitary, unresectable HCC: The LEGACY study. Hepatology. 2021;74(5):2342-2352. doi: 10.1002/hep.31819

 

  1. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: A state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: Technical and methodologic considerations. J Vasc Interv Radiol. 2006;17(8):1251-1278. doi: 10.1097/01.RVI.0000233785.75257.9A

 

  1. Chiesa C, Bardiès M, Zaidi H. Voxel-based dosimetry is superior to mean absorbed dose approach for establishing dose-effect relationship in targeted radionuclide therapy. Med Phys. 2019;46(12):5403-5406. doi: 10.1002/mp.13851

 

  1. Mok GSP, Dewaraja YK. Recent advances in voxel-based targeted radionuclide therapy dosimetry. Quant Imaging Med Surg. 2021;11(2):483-489. doi: 10.21037/qims-20-1006

 

  1. Kappadath SC, Mikell J, Balagopal A, Baladandayuthapani V, Kaseb A, Mahvash A. Hepatocellular carcinoma tumor dose response after 90y-radioembolization with glass microspheres using 90Y-SPECT/CT-based voxel dosimetry. Int J Radiat Oncol Biol Phys. 2018;102(2):451-461. doi: 10.1016/j.ijrobp.2018.05.062

 

  1. Tran-Gia J, Salas-Ramirez M, Lassmann M. What you see is not what you get: On the accuracy of voxel-based dosimetry in molecular radiotherapy. J Nucl Med. 2020;61(8):1178-1186. doi: 10.2967/jnumed.119.231480

 

  1. Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW. Quantitative comparison of PET and bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One. 2013;8(2):e55742. doi: 10.1371/journal.pone.0055742

 

  1. Tafti BA, Padia SA. Dosimetry of Y-90 microspheres utilizing Tc-99m SPECT and Y-90 PET. Semin Nucl Med. 2019;49(3):211-217. doi: 10.1053/j.semnuclmed.2019.01.005

 

  1. Ahmadzadehfar H, Muckle M, Sabet A, et al. The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging. 2012;39(2):309-315. doi: 10.1007/s00259-011-1940-8

 

  1. Dewaraja YK, Chun SY, Srinivasa RN, et al. Improved quantitative 90 Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling. Med Phys. 2017;44(12):6364-6376. doi: 10.1002/mp.12597

 

  1. Porter CA, Bradley KM, Hippeläinen ET, Walker MD, McGowan DR. Phantom and clinical evaluation of the effect of full Monte Carlo collimator modelling in post-SIRT yttrium-90 Bremsstrahlung SPECT imaging. EJNMMI Res. 2018;8(1):7. doi: 10.1186/s13550-018-0361-0

 

  1. Siman W, Mikell JK, Kappadath SC. Practical reconstruction protocol for quantitative (90)Y bremsstrahlung SPECT/CT. Med Phys. 2016;43(9):5093. doi: 10.1118/1.4960629

 

  1. Jia Y, Li Z, Akhavanallaf A, Fessler JA, Dewaraja YK. 90Y SPECT scatter estimation and voxel dosimetry in radioembolization using a unified deep learning framework. EJNMMI Phys. 2023;10(1):82. doi: 10.1186/s40658-023-00598-9

 

  1. Wright CL, Zhang J, Tweedle MF, Knopp MV, Hall NC. Theranostic imaging of yttrium-90. Biomed Res Int. 2015;2015:481279. doi: 10.1155/2015/481279

 

  1. Dryák P, Šolc J. Measurement of the branching ratio related to the internal pair production of Y-90. Appl Radiat Isot. 2020;156:108942. doi: 10.1016/j.apradiso.2019.108942

 

  1. Werner MK, Brechtel K, Beyer T, Dittmann H, Pfannenberg C, Kupferschläger J. PET/CT for the assessment and quantification of (90)Y biodistribution after selective internal radiotherapy (SIRT) of liver metastases. Eur J Nucl Med Mol Imaging. 2010;37(2):407-408. doi: 10.1007/s00259-009-1317-4

 

  1. Pasciak AS, Bourgeois AC, McKinney JM, et al. Radioembolization and the dynamic role of (90)Y PET/CT. Front Oncol. 2014;4:38. doi: 10.3389/fonc.2014.00038

 

  1. Lhommel R, Goffette P, Van den Eynde M, et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009;36(10):1696. doi: 10.1007/s00259-009-1210-1

 

  1. Costa G, Spencer B, Omidvari N, et al. Radioembolization dosimetry with total-body 90Y PET. J Nucl Med. 2022;63(7):1101-1107. doi: 10.2967/jnumed.121.263145

 

  1. Knešaurek K, Martinez RB, Ghesani M. Tumour-to-normal tissue (T/N) dosimetry ratios role in assessment of 90Y selective internal radiation therapy (SIRT). Br J Radiol. 2022;95(1129):20210294. doi: 10.1259/bjr.20210294

 

  1. Vo NH, Malik MS, Tahir MM, et al. Prediction of recurrence of hepatocellular carcinoma following radiation segmentectomy with resin microspheres based on underdosed tumor volume on yttrium-90 PET/CT dosimetry. J Vasc Interv Radiol. 2025;36(10):1576-1586. doi: 10.1016/j.jvir.2025.06.018

 

  1. Hesse M, D’Abadie P, Lhommel R, Jamar F, Walrand S. Yttrium-90 TOF-PET-based EUD predicts response post liver radioembolizations using recommended manufacturer FDG reconstruction parameters. Front Oncol. 2021;11:592529. doi: 10.3389/fonc.2021.592529

 

  1. Wei L, Cui C, Xu J, Kaza R, El Naqa I, Dewaraja YK. Tumor response prediction in 90Y radioembolization with PET-based radiomics features and absorbed dose metrics. EJNMMI Phys. 2020;7(1):74. doi: 10.1186/s40658-020-00340-9

 

  1. Busse NC, Al-Ghazi M, Abi-Jaoudeh N, et al. AAPM medical physics practice guideline 14.a: Yttrium-90 microsphere radioembolization. J Appl Clin Med Phys. 2024;25(2):e14157. doi: 10.1002/acm2.14157

 

  1. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3-12. doi: 10.2967/jnumed.116.184028

 

  1. Zhang Y, Hu P, He Y, et al. Ultrafast 30-s total-body PET/ CT scan: A preliminary study. Eur J Nucl Med Mol Imaging. 2022;49(8):2504-2513. doi: 10.1007/s00259-022-05838-1

 

  1. Zeimpekis KG, Mercolli L, Conti M, et al. Phantom-based evaluation of yttrium-90 datasets using biograph vision quadra. Eur J Nucl Med Mol Imaging. 2023;50(4):1168-1182. doi: 10.1007/s00259-022-06074-3

 

  1. Zeimpekis KG, Mercolli L, Conti M, Sari H, Rominger A, Rathke H. 90Y post-radioembolization clinical assessment with whole-body Biograph Vision Quadra PET/CT: Image quality, tumor, liver and lung dosimetry. Eur J Nucl Med Mol Imaging. 2024;51(7):2100-2113. doi: 10.1007/s00259-024-06650-9

 

  1. Zeimpekis KG, Sari H, Gözlügöl N, et al. Evaluation of long axial field-of-view (LAFOV) PET/CT for post-treatment dosimetry in Yttrium-90 radioembolization of liver tumors: A comparative study with conventional SPECT imaging. Eur J Nucl Med Mol Imaging. 2025;52(4):1460-1471. doi: 10.1007/s00259-024-07034-9

 

  1. Mercolli L, Zeimpekis K, Prenosil GA, et al. Phantom study for 90Y liver radioembolization dosimetry with a long axial field-of-view PET/CT. Phys Med. 2024;118:103296. doi: 10.1016/j.ejmp.2024.103296

 

  1. Kao YH, Steinberg JD, Tay YS, et al. Post-radioembolization yttrium-90 PET/CT - part 1: diagnostic reporting. EJNMMI Res. 2013;3(1):56. doi: 10.1186/2191-219X-3-56

 

  1. Woodhead G, Young S. Another hammer, but we need a Wrench, and a screwdriver-positron emission tomography/ magnetic resonance imaging represents another tool for post-delivery 90Y dosimetry, but what are we still missing. J Gastrointest Oncol. 2024;15(4):2006-2010. doi: 10.21037/jgo-24-460

 

  1. Demir B, Soydal C, Kucuk NO, et al. Voxel-based dosimetry with integrated Y-90 PET/MRI and prediction of response of primary and metastatic liver tumors to radioembolization with Y-90 glass microspheres. Ann Nucl Med. 2025;39(1):31-46. doi: 10.1007/s12149-024-01974-w

 

  1. Demir B, Soydal C, Celebioglu EC, et al. Prediction of left lobe hypertrophy with voxel-based dosimetry using integrated Y-90 PET/MRI after radioembolization of liver tumors with Y-90 microspheres. Eur J Nucl Med Mol Imaging. 2025;52(5):1695-1707. doi: 10.1007/s00259-024-07023-y

 

  1. Calatayud-Jordán J, Carrasco-Vela N, Chimeno- Hernández J, et al. Y-90 PET/MR imaging optimization with a Bayesian penalized likelihood reconstruction algorithm. Phys Eng Sci Med. 2024;47(4):1397-1413. doi: 10.1007/s13246-024-01452-7

 

  1. Gurajala R, Partovi S, DiFilippo FP, et al. Prospective comparison of positron emission tomography (PET)/ magnetic resonance and PET/computed tomography dosimetry in hepatic malignant neoplastic disease after 90Y radioembolization treatment. J Gastrointest Oncol. 2024;15(1):356-367. doi: 10.21037/jgo-23-890

 

  1. Carlier T, Gnesin S, Mikell JK, et al. Discordance between 90Y-PET/CT(MR)-estimated activity and dose calibrator measured administered activity: An international study in SIRT patients treated with resin and glass microspheres. EJNMMI Phys. 2025;12(1):12. doi: 10.1186/s40658-025-00725-8

 

  1. Wong CY, Salem R, Raman S, Gates VL, Dworkin HJ. Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: A comparison with CT or MRI. Eur J Nucl Med Mol Imaging. 2002;29(6):815-820. doi: 10.1007/s00259-002-0787-4

 

  1. Zerizer I, Al-Nahhas A, Towey D, et al. The role of early ¹⁸F-FDG PET/CT in prediction of progression-free survival after ⁹⁰Y radioembolization: Comparison with RECIST and tumour density criteria. Eur J Nucl Med Mol Imaging. 2012;39(9):1391-1399. doi: 10.1007/s00259-012-2149-1

 

  1. Haug AR, Heinemann V, Bruns CJ, et al. 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres. Eur J Nucl Med Mol Imaging. 2011;38(6):1037-1045. doi: 10.1007/s00259-011-1736-x

 

  1. Shady W, Kishore S, Gavane S, et al. Metabolic tumor volume and total lesion glycolysis on FDG-PET/CT can predict overall survival after (90)Y radioembolization of colorectal liver metastases: A comparison with SUVmax, SUVpeak, and RECIST 1.0. Eur J Radiol. 2016;85(6):1224-1231. doi: 10.1016/j.ejrad.2016.03.029

 

  1. Haug AR, Tiega Donfack BP, Trumm C, et al. 18F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. J Nucl Med. 2012;53(3):371-377. doi: 10.2967/jnumed.111.096230

 

  1. Bagni O, Filippi L, Schillaci O. 18F-FDG PET-derived parameters as prognostic indices in hepatic malignancies after 90Y radioembolization: Is there a role. Eur J Nucl Med Mol Imaging. 2015. 42(3): 367-369. doi: 10.1007/s00259-014-2966-5

 

  1. Kennedy AS, Ball DS, Cohen SJ, et al. Hepatic imaging response to radioembolization with yttrium-90-labeled resin microspheres for tumor progression during systemic chemotherapy in patients with colorectal liver metastases. J Gastrointest Oncol. 2015;6(6):594-604. doi: 10.3978/j.issn.2078-6891.2015.082

 

  1. Szyszko T, Al-Nahhas A, Canelo R, et al. Assessment of response to treatment of unresectable liver tumours with 90Y microspheres: Value of FDG PET versus computed tomography. Nucl Med Commun. 2007;28(1):15-20. doi: 10.1097/MNM.0b013e328011453b

 

  1. Sabet A, Meyer C, Aouf A, et al. Early post-treatment FDG PET predicts survival after 90Y microsphere radioembolization in liver-dominant metastatic colorectal cancer. Eur J Nucl Med Mol Imaging. 2015;42(3):370-376. doi: 10.1007/s00259-014-2935-z

 

  1. Bagni O, Filippi L, Schillaci O. The role of (18)F-FDG positron emission tomography in the follow-up of liver tumors treated with (90)Yttrium radioembolization. Am J Nucl Med Mol Imaging. 2015;5(3):220-232.

 

  1. Michl M, Lehner S, Paprottka PM, et al. Use of PERCIST for prediction of progression-free and overall survival after radioembolization for liver metastases from pancreatic cancer. J Nucl Med. 2016. 57(3): 355-360. doi: 10.2967/jnumed.115.165613

 

  1. Barabasch A, Kraemer NA, Ciritsis A, et al. Diagnostic accuracy of diffusion-weighted magnetic resonance imaging versus positron emission tomography/computed tomography for early response assessment of liver metastases to Y90- radioembolization. Invest Radiol. 2015;50(6):409-415. doi: 10.1097/RLI.0000000000000144

 

  1. Barabasch A, Heinzel A, Bruners P, Kraemer NA, Kuhl CK. Diffusion-weighted MRI is superior to PET/CT in predicting survival of patients undergoing 90Y radioembolization of hepatic metastases. Radiology. 2018;288(3):764-773. doi: 10.1148/radiol.2018170408

 

  1. Belhocine T, Foidart J, Rigo P, et al. Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumours: Correlations with the pathological indexes p53 and Ki-67. Nucl Med Commun. 2002;23(8):727-734. doi: 10.1097/00006231-200208000-00005

 

  1. Filippi L, Scopinaro F, Pelle G, et al. Molecular responseassessed by (68)Ga-DOTANOC and survival after (90)Y microsphere therapy in patients with liver metastases from neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2016;43(3):432-440. doi: 10.1007/s00259-015-3178-3

 

  1. Ingenerf M, Kiesl S, Karim S, et al. 68Ga-DOTATATE PET/CT and MRI with diffusion-weighted imaging (DWI) in short- and long-term assessment of tumor response of neuroendocrine liver metastases (NELM) following transarterial radioembolization (TARE). Cancers (Basel). 2021;13(17):4321. doi: 10.3390/cancers13174321

 

  1. Hartenbach M, Weber S, Albert NL, et al. Evaluating treatment response of radioembolization in intermediate-stage hepatocellular carcinoma patients using 18F-fluoroethylcholine PET/CT. J Nucl Med. 2015;56(11):1661-1666. doi: 10.2967/jnumed.115.158758

 

  1. Bertagna F, Bertoli M, Bosio G, et al. Diagnostic role of radiolabelled choline PET or PET/CT in hepatocellular carcinoma: A systematic review and meta-analysis. Hepatol Int. 2014;8(4):493-500. doi: 10.1007/s12072-014-9566-0

 

  1. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11(12):835-848. doi: 10.1038/nrc3162

 

  1. Filippi L, Bagni O, Notarianni E, Saltarelli A, Ambrogi C, Schillaci O. PET/CT with 18F-choline or 18F-FDG in hepatocellular carcinoma submitted to 90Y-TARE: A real-world study. Biomedicines. 2022;10(11):2996. doi: 10.3390/biomedicines10112996

 

  1. Aujay G, Debordeaux F, Blanc JF, et al. 18F-choline PET-computed tomography for the prediction of early treatment responses to transarterial radioembolization in patients with hepatocellular carcinoma. Nucl Med Commun. 2021;42(6):633-638. doi: 10.1097/MNM.0000000000001383

 

  1. Yoshii Y, Waki A, Furukawa T, et al. Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: Implications for the mechanism of acetate PET. Nucl Med Biol. 2009;36(7):771-777. doi: 10.1016/j.nucmedbio.2009.05.006

 

  1. Cheung TT, Ho CL, Lo CM, et al. 11C-acetate and 18F-FDG PET/CT for clinical staging and selection of patients with hepatocellular carcinoma for liver transplantation on the basis of Milan criteria: Surgeon’s perspective. J Nucl Med. 2013;54(2):192-200. doi: 10.2967/jnumed.112.107516

 

  1. Ho CL, Chen S, Cheung SK, et al. Radioembolization with 90Y glass microspheres for hepatocellular carcinoma: Significance of pretreatment 11C-acetate and 18F-FDG PET/CT and posttreatment 90Y PET/CT in individualized dose prescription. Eur J Nucl Med Mol Imaging. 2018;45(12):2110-2121. doi: 10.1007/s00259-018-4064-6
Share
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Print ISSN: 3060-8554, Published by AccScience Publishing