AccScience Publishing / ARNM / Online First / DOI: 10.36922/ARNM025130015
MINI-REVIEW

Insights into Cripto-1 as a target for cancer diagnosis and treatment: A mini-review

Zhengkun Gao1 Qian Li2 Ran Zheng2 Jing Si3,4 Bing Wang5* Lu Gan3,4*
Show Less
1 Department of Oral and Maxillofacial Surgery, Gansu Provincial Hospital, Gansu, China
2 Department (Hospital) of Stomatology, Lanzhou University, Gansu, China
3 Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
4 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
5 Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
Received: 26 March 2025 | Revised: 19 May 2025 | Accepted: 5 June 2025 | Published online: 26 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cripto-1, a glycoprotein and key member of the epidermal growth factor-Cripto-1-FRL-1-Cryptic family, has garnered significant attention in cancer research due to its dual roles in embryonic development and tumor progression. The central role of Cripto-1 in regulating signaling pathways that govern cell behavior positions it as a promising target for enhancing diagnostic precision and therapeutic efficacy in cancer management. This mini-review explores the role of Cripto-1 in cancer biology, focusing on its involvement in key oncogenic pathways such as cell proliferation, migration, angiogenesis, and the maintenance of cancer stem cells (CSCs). Cripto-1 supports CSC self-renewal and contributes to treatment resistance. The review also examines recent advances in Cripto-1-targeted therapy, including monoclonal antibodies, small molecule inhibitors, and early-phase clinical trials, highlighting their therapeutic efficacy and safety profile. By synthesizing these findings, this review offers a comprehensive understanding of Cripto-1’s clinical relevance and provides new insights into its potential to improve diagnostic accuracy and therapeutic outcomes in cancer management.

Keywords
Cripto-1
Cancer
Diagnostic biomarker
Treatment target
Cancer stem cells
Funding
This work was supported by the Science and Technology Plan Project of Chengguan District (2022SHFZ0020) and the Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas (MWZD202201).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10-45. doi: 10.3322/caac.21871

 

  1. Alam MJ, Takahashi R, Afify SM, et al. Exogenous cripto-1 suppresses self-renewal of cancer stem cell model. Int J Mol Sci. 2018;19(11):3345. doi: 10.3390/ijms19113345

 

  1. Dela Cruz JM, Roessler E, Bamford RN, et al. Loss-of-function mutation in the CFC domain of TDGF-1 is associated with human forebrain defects. Am J Hum Genet. 2001;69(4):343-343.

 

  1. Saccone S, Rapisarda A, Motta S, Dono R, Persico GM, Dellavalle G. Regional localization of the human Egf-Like growth-factor cripto gene (Tdgf-1) to chromosome 3p21. Hum Genet. 1995;95(2):229-230. doi: 10.1007/Bf00209409

 

  1. Watanabe K, Hamada S, Bianco C, et al. Requirement of Glycosylphosphatidylinositol anchor of cripto-1 for activity as a nodal co-receptor. J Biol Chem. 2007;282(49):35772- 35786. doi: 10.1074/jbc.M707351200

 

  1. Colas JF, Schoenwolf GC. Subtractive hybridization identifies chick-cripto, a novel EGF-CFC ortholog expressed during gastrulation, neurulation and early cardiogenesis. Gene. 2000;255(2):205-217. doi: 10.1016/S0378-1119(00)00337-1

 

  1. Iaccarino E, Sandomenico A, Corvino G, et al. Investigating the oxidative refolding mechanism of Cripto-1 CFC domain. Int J Biol Macromol. 2019;137:1179-1189. doi: 10.1016/j.ijbiomac.2019.07.040

 

  1. Foley SF, Van Vlijmen HWT, Boynton RE, et al. The CRIPTO/FRL-1/CRYPTIC (CFC) domain of human cripto. Functional and structural insights through disulfide structure analysis. Eur J Biochem. 2003;270(17):3610-3618. doi: 10.1046/j.1432-1033.2003.03749.x

 

  1. Dono R, Scalera L, Pacifico F, Acampora D, Persico MG, Simeone A. The murine cripto gene: Expression during mesoderm induction and early heart morphogenesis. Development. 1993;118(4):1157-1168. doi: 10.1242/dev.118.4.1157

 

  1. Ishii H, Afify SM, Hassan G, Salomon DS, Seno M. Cripto-1 as a potential target of cancer stem cells for immunotherapy. Cancers (Basel). 2021;13(10):2491. doi: 10.3390/cancers13102491

 

  1. Rangel MC, Karasawa H, Castro NP, Nagaoka T, Salomon DS, Bianco C. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. Am J Pathol. 2012;180(6):2188-2200. doi: 10.1016/j.ajpath.2012.02.031

 

  1. Chu KY, Crawford AN, Krah BS, et al. Cripto-1 acts as a molecular bridge linking nodal to ALK4 via distinct structural domains. Protein Sci. 2025;34(2):e70034. doi: 10.1002/pro.70034

 

  1. Duelen R, Gilbert G, Patel A, et al. Activin A modulates CRIPTO-1/HNF4 α+ cells to guide cardiac differentiation from human embryonic stem cells. Stem Cells Int. 2017;2017:4651238. doi: 10.1155/2017/4651238

 

  1. Shafiei S, Farah O, Dufort D. Maternal Cripto is required for proper uterine decidualization and peri-implantation uterine remodeling. Biol Reprod. 2021;104(5):1045-1057. doi: 10.1093/biolre/ioab020

 

  1. Stephens EB, Jackson M, Cui L, et al. Early dysregulation of cripto-1 and immunomodulatory genes in the cerebral cortex in a macaque model of neuro AIDS. Neurosci Lett. 2006;410(2):94-99. doi: 10.1016/j.neulet.2006.07.066

 

  1. Wechselberger C, Ebert AD, Bianco C, et al. Cripto-1 enhances migration and branching morphogenesis of mouse mammary epithelial cells. Exp Cell Res. 2001;266(1):95-105. doi: 10.1006/excr.2001.5195

 

  1. Angrisano T, Varrone F, Ragozzino E, Fico A, Minchiotti G, Brancaccio M. Cripto is targeted by miR-1a-3p in a mouse model of heart development. Int J Mol Sci. 2023;24(15):12251. doi: 10.3390/ijms241512251

 

  1. Jin JZ, Ding JX. Is required for mesoderm and endoderm cell allocation during mouse gastrulation. Dev Biol. 2013;381(1):170-178. doi: 10.1016/j.ydbio.2013.05.029

 

  1. Lin XL, Zhao WT, Jia JS, et al. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality. Sci Rep. 2016;6:34501. doi: 10.1038/srep34501

 

  1. Klauzinska M, McCurdy D, Rangel MC, et al. Cripto-1 ablation disrupts alveolar development in the mouse mammary gland through a progesterone receptor-mediated pathway. Am J Pathol. 2015;185(11):2907-2922. doi: 10.1016/j.ajpath.2015.07.023

 

  1. Sousa ER, Zoni E, Karkampouna S, et al. A multidisciplinary review of the roles of cripto in the scientific literature through a bibliometric analysis of its biological roles. Cancers (Basel). 2020;12(6):1480. doi: 10.3390/cancers12061480

 

  1. Nagaoka T, Karasawa H, Castro NP, Rangel MC, Salomon DS, Bianco C. An evolving web of signaling networks regulated by cripto-1. Growth Factors. 2012;30(1):13-21. doi: 10.3109/08977194.2011.641962

 

  1. Morkel M, Huelsken J, Wakamiya M, et al. β-Catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development. 2003;130(25):6283-6294. doi: 10.1242/dev.00859

 

  1. Watanabe K, Nagaoka T, Lee JM, et al. Enhancement of Notch receptor maturation and signaling sensitivity by cripto-1. J Cell Biol. 2009;187(3):343-353. doi: 10.1083/jcb.200905105

 

  1. Bianco C, Cotten C, Lonardo E, et al. Cripto-1 is required for hypoxia to induce cardiac differentiation of mouse embryonic stem cells. Am J Pathol. 2009;175(5):2146-2158. doi: 10.2353/ajpath.2009.090218

 

  1. Hamada S, Watanabe K, Hirota M, et al. β-catenin/TCF/ LEF regulate expression of the short form human Cripto-1. Biochem Bioph Res Commun. 2007;355(1):240-244. doi: 10.1016/j.bbrc.2007.01.143

 

  1. Mancino M, Strizzi L, Wechselberger C, et al. Regulation of human cripto-1 gene expression by TGF-beta1 and BMP-4 in embryonal and colon cancer cells. J Cell Physiol. 2008;215(1):192-203. doi: 10.1002/jcp.21301

 

  1. Bianco C, Castro NP, Baraty C, et al. Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. J Cell Physiol. 2013;228(6):1174-1188. doi: 10.1002/jcp.24271

 

  1. Ong SG, Lee WH, Kodo K, Wu JC. MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv Drug Deliv Rev. 2015;88:3-15. doi: 10.1016/j.addr.2015.04.004

 

  1. Park KS, Moon YW, Raffeld M, Lee DH, Wang YS, Giaccone G. High cripto-1 and low miR-205 expression levels as prognostic markers in early stage non-small cell lung cancer. Lung Cancer. 2018;116:38-45. doi: 10.1016/j.lungcan.2017.12.010

 

  1. Xiaojun B, Yanjun X, Yilun L. MicroRNA-3653-3p inhibited papillary thyroid carcinoma progression by regulating CRIPTO-1. Cell Mol Biol. 2024;69(14):272-276. doi: 10.14715/cmb/2023.69.14.45

 

  1. Arnouk H, Yum G, Shah D. Cripto-1 as a key factor in tumor progression, epithelial to mesenchymal transition and cancer stem cells. Int J Mol Sci. 2021;22(17):9280. doi: 10.3390/ijms22179280

 

  1. Liu R, Li XQ, Gao WM, et al. Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/ AKT signaling, tumor growth, and metastasis. Clin Cancer Res. 2013;19(24):6802-6811. doi: 10.1158/1078-0432.Ccr-13-1106

 

  1. Ni M, Zhang Y, Lee AS. Beyond the endoplasmic reticulum: Atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J. 2011;434:181-188. doi: 10.1042/Bj20101569

 

  1. Kelber JA, Panopoulos AD, Shani G, et al. Blockade of cripto binding to cell surface GRP78 inhibits oncogenic cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene. 2009;28(24):2324-2336. doi: 10.1038/onc.2009.97

 

  1. Castaneda M, Den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol. 2022;87:17-31. doi: 10.1016/j.semcancer.2022.10.006

 

  1. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84. doi: 10.1038/s41580-018-0080-4

 

  1. Balcioglu O, Heinz RE, Freeman DW, et al. CRIPTO antagonist ALK4-Fc inhibits breast cancer cell plasticity and adaptation to stress. Breast Cancer Res. 2020;22(1):125. doi: 10.1186/s13058-020-01361-z

 

  1. Lambert AW, Weinberg RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer. 2021;21(5):325-338. doi: 10.1038/s41568-021-00332-6

 

  1. Fiorenzano A, Pascale E, D’Aniello C, et al. Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency. Nat Commun. 2016;7:12589. doi: 10.1038/ncomms12589

 

  1. Bianco C, Rangel MC, Castro NP, et al. Role of Cripto-1 in stem cell maintenance and malignant progression. Am J Pathol. 2010;177(2):532-540. doi: 10.2353/ajpath.2010.100102

 

  1. Liu Q, Cui X, Yu X, et al. Cripto-1 acts as a functional marker of cancer stem-like cells and predicts prognosis of the patients in esophageal squamous cell carcinoma. Mol Cancer. 2017;16:81. doi: 10.1186/s12943-017-0650-7

 

  1. Lo RCL, Leung CON, Chan KKS, et al. Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway. Cell Death Differ. 2018;25(8):1426-1441. doi: 10.1038/s41418-018-0059-x

 

  1. Alowaidi F, Hashimi SM, Nguyen M, et al. Investigating the role of CRIPTO-1 (TDGF-1) in glioblastoma multiforme U87 cell line. J Cell Biochem. 2019;120(5):7412-7427. doi: 10.1002/jcb.28015

 

  1. Alowaidi F, Hashimi SM, Alqurashi N, Wood SA, Wei MQ. Cripto-1 overexpression in U87 glioblastoma cells activates MAPK, focal adhesion and ErbB pathways. Oncol Lett. 2019;18(3):3399-3406. doi: 10.3892/ol.2019.10626

 

  1. Brandes AA, Tosoni A, Franceschi E, Reni M, Gatta G, Vecht C. Glioblastoma in adults. Crit Rev Oncol Hematol. 2008;67(2):139-152. doi: 10.1016/j.critrevonc.2008.02.005

 

  1. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 2018;20(suppl 4):iv1-iv86. doi: 10.1093/neuonc/noy131

 

  1. Zhao Y, Huang W, Kim TM, et al. MicroRNA-29a activates a multi-component growth and invasion program in glioblastoma. J Exp Clin Cancer Res. 2019;38:1-13. doi: 10.1186/s13046-019-1026-1

 

  1. Tysnes BB, Sætran HA, Mork SJ, et al. Age-dependent association between protein expression of the embryonic stem cell marker cripto-1 and survival of glioblastoma patients. Transl Oncol. 2013;6(6):732-741. doi: 10.1593/tlo.13427

 

  1. Pilgaard L, Mortensen JH, Henriksen M, et al. Cripto-1 expression in glioblastoma multiforme. Brain Pathol. 2014;24(4):360-370. doi: 10.1111/bpa.12131

 

  1. Amaral MN, Faísca P, Ferreira HA, Gaspar MM, Reis CPJC. Current insights and progress in the clinical management of head and neck cancer. Cancers (Basel). 2022;14(24):6079. doi: 10.3390/cancers14246079

 

  1. Petersson F. Nasopharyngeal Carcinoma: A Review. Netherlands: Elsevier; 2015. p. 54-73. doi: 10.1053/j.semdp.2015.02.021

 

  1. Wu ZR, Li G, Wu LR, Weng DS, Li XP, Yao KT. Cripto-1 overexpression is involved in the tumorigenesis of nasopharyngeal carcinoma. BMC Cancer. 2009;9:315. doi: 10.1186/1471-2407-9-315

 

  1. Ye Q, Li J, Wang XY, et al. In vivo and in vitro study of co-expression of LMP1 and Cripto-1 in nasopharyngeal carcinoma. Braz J Otorhinolaryngol. 2020;86(5):617-625. doi: 10.1016/j.bjorl.2019.04.002

 

  1. Li XH, Li D, Liu C, Zhang MM, Guan XJ, Fu Y. p33ING1b regulates acetylation of p53 in oral squamous cell carcinoma via SIR2. Cancer Cell Int. 2020;20:398. doi: 10.1186/s12935-020-01489-0

 

  1. Yoon HJ, Hong JS, Shin WJ, et al. The role of Cripto-1 in the tumorigenesis and progression of oral squamous cell carcinoma. Oral Oncol. 2011;47(11):1023-1031. doi: 10.1016/j.oraloncology.2011.07.019

 

  1. Jain A, Mallupattu SK, Thakur R, et al. Role of oncofetal protein CR-1 as a potential tumor marker for oral squamous cell carcinoma. Indian J Clin Biochem. 2021;36:288-295. doi: 10.1007/s12291-020-00898-2

 

  1. Daraghma H, Untiveros G, Raskind A, et al. The role of Nodal and Cripto-1 in human oral squamous cell carcinoma. Oral Dis. 2021;27(5):1137-1147. doi: 10.1111/odi.13640

 

  1. Xu C, Yuan Q, Hu H, et al. Expression of Cripto-1 predicts poor prognosis in stage I non-small cell lung cancer. J Cell Mol Med. 2020;24(17):9705-9711. doi: 10.1111/jcmm.15518

 

  1. Huang T, Guo YZ, Yue X, et al. Cripto-1 promotes tumor invasion and predicts poor outcomes in hepatocellular carcinoma. Carcinogenesis. 2020;41(5):571-581. doi: 10.1093/carcin/bgz133

 

  1. Hu C, Zhang Y, Zhang M, et al. Exosomal cripto-1 serves as a potential biomarker for perihilar cholangiocarcinoma. Front Oncol. 2021;11:730615. doi: 10.3389/fonc.2021.730615

 

  1. Liu N, Su C, Xue J. Application of computed tomography scanning parameters combined with serum cripto-1 in the diagnosis of renal cell carcinoma. Arch Esp Urol. 2024;77(1):25-30. doi: 10.56434/j.arch.esp.urol.20247701.3

 

  1. Tesar EC, Mikolasevic I, Skocilic I, et al. Prostate cancer scoring index for risk of progression of radioresistant disease. J Pers Med. 2023;13(5):870. doi:10.3390/jpm13050870

 

  1. Gudbergsson JM, Duroux M. An evaluation of different cripto-1 antibodies and their variable results. J Cell Biochem. 2020;121(1):545-556. doi: 10.1002/jcb.29293

 

  1. Ligtenberg MA, Witt K, Galvez-Cancino F, et al. Cripto-1 vaccination elicits protective immunity against metastatic melanoma. Oncoimmunology. 2016;5(5):e1128613. doi: 10.1080/2162402X.2015.1128613

 

  1. Ishii H, Zahra MH, Takayanagi A, Seno M. A novel artificially humanized anti-cripto-1 antibody suppressing cancer cell growth. Int J Mol Sci. 2021;22(4):1709. doi: 10.3390/ijms22041709

 

  1. Afify SM, Hassan G, Nawara HM, et al. Optimization of production and characterization of a recombinant soluble human Cripto-1 protein inhibiting self-renewal of cancer stem cells. J Cell Biochem. 2022;123(7):1183-1196. doi: 10.1002/jcb.30272

 

  1. Annamaria S, Fabio S, Jwala PS, et al. Recombinant humanized Fab fragments targeting the CFC domain of human cripto-1. Biochem Biophys Res Commun. 2023;694:149417. doi: 10.1016/j.bbrc.2023.149417

 

  1. Iaccarino E, Calvanese L, Untiveros G, et al. Structure-based design of small bicyclic peptide inhibitors of cripto-1 activity. Biochem J. 2020;477(8):1391-1407. doi: 10.1042/Bcj20190953

 

  1. Wang Y, Li X, Wang S, et al. miR-3929 inhibits proliferation and promotes apoptosis by downregulating cripto-1 expression in cervical cancer cells. Cytogenet Genome Res. 2021;161:425-436. doi: 10.1159/000518521

 

  1. Zang TL. Effect of combination of radiotherapy and docetaxel on Cripto-1, b-catenin and DBC1 expression in breast cancer patients. Indian J Exp Biol. 2024;62(1):71-76. doi: 10.56042/ijeb.v62i01.7444

 

Share
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Print ISSN: 3060-8554, Published by AccScience Publishing