18F-FDG uptake in patients with hypercholesterolemia using a standard compartmental modeling approach

Hypercholesterolemia is a major risk factor of atherosclerotic cardiovascular disease. However, current risk stratification models lack consideration of calcium burden. This study aimed to examine the association between calcium burden and inflammatory response in hypercholesterolemia patients. Eighteen participants were prospectively scheduled for 18F-fluorodeoxyglucose (18F-FDG) PET/CT examination. They were classified into a control group (CL, n=4), a hypercholesteremia group (HC, n=8), and a stable angina group (SA, n=6). Arterial calcium was defined at attenuation ≥130 Hounsfield units in arterial regions of interest (ROIs), and calcium density was divided into four groups based on the Agatston strategy. Calcium area was defined by at least two adjoining pixels and normalized to artery area, forming two groups based on the mean area. The metabolic rate of glucose (MRGlu) was estimated using a two-tissue compartment model. For all ROIs, MRGlu was significantly higher in both HC and SA groups compared to CL (p<0.05). Among no-calcium groups (CL, HC, and SA), no statistical significance was observed (p>0.05). In with-calcium groups, MRGlu in HC was significantly higher than in CL and SA (p<0.05). At the highest calcium density cluster, the difference between CL and HC was also significant (p<0.05). CL and SA showed a similar pattern of decreasing MRGlu with increasing calcium area (p<0.05 when compared with no-calcium), while the HC group showed a marked increase in MRGlu with higher calcium area (p<0.05) compared to CL and AS. Hypercholesterolemia is associated with increased glucose metabolism. Higher calcium area and density in hypercholesterolemia patients appear metabolically active. The results suggest that incorporating calcium burden in hypercholesterolemia risk stratification models may enhance risk assessment.
- Wong ND, Budoff MJ, Ferdinand K, et al. Atherosclerotic cardiovascular disease risk assessment: An American Society for Preventive Cardiology clinical practice statement. Am J Prev Cardiol. 2022;10:100335. doi: 10.1016/j.ajpc.2022.100335
- Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines. 2022;10(8):1938. doi: 10.3390/biomedicines10081938
- Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation. 2017;135(10):e146-e603. doi: 10.1161/CIR.0000000000000485
- Yan L, Ye X, Fu L, Hou W, Lin S, Su H. Construction of vulnerable plaque prediction model based on multimodal vascular ultrasound parameters and clinical risk factors. Sci Rep. 2024;14(1):24255. doi: 10.1038/s41598-024-75375-4
- Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: The Global Burden of Disease 2010 study. Circulation. 2014;129(14):1483-1492. doi: 10.1161/CIRCULATIONAHA.113.004042
- Fleg JL, Forman DE, Berra K, et al. Secondary prevention of atherosclerotic cardiovascular disease in older adults: A scientific statement from the American Heart Association. Circulation. 2013;128(22):2422-2446. doi: 10.1161/01.cir.0000436752.99896.22
- Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5(8):927-946.
- Viedma-Guiard E., Guidoux C, Amarenco P, Meseguer E. Aortic Sources of Embolism. Front Neurol. 2021;11:606663. doi: 10.3389/fneur.2020.606663
- Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852- 1866. doi: 10.1161/CIRCRESAHA.114.302721
- Fan J, Watanabe T. Atherosclerosis: Known and unknown. Pathol Int. 2022;72(3):151-160. doi: 10.1111/pin.13202
- Prasad K, Mishra M. Mechanism of hypercholesterolemia-induced atherosclerosis. Rev Cardiovasc Med. 2022;23(6):212. doi: 10.31083/j.rcm2306212
- Jansen ACM, van Aalst-Cohen ES, Tanck MW, et al. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: Data in 2400 patients. J Intern Med. 2004;256(6):482-490. doi: 10.1111/j.1365-2796.2004.01405.x
- Schmidt HH, Hill S, Makariou EV, Feuerstein IM, Dugi KA, Hoeg JM. Relation of cholesterol-year score to severity of calcific atherosclerosis and tissue deposition in homozygous familial hypercholesterolemia. Am J Cardiol. 1996;77(8):575-580. doi: 10.1016/s0002-9149(97)89309-5
- Pérez de Isla L, Alonso R, Mata N, et al. Predicting cardiovascular events in familial hypercholesterolemia: The SAFEHEART registry (Spanish familial hypercholesterolemia cohort study). Circulation. 2017;135:2133-2144. doi: 10.1161/CIRCULATIONAHA.116.024541
- Béliard S, Boccara F, Cariou B, et al. High burden of recurrent cardiovascular events in heterozygous familial hypercholesterolemia: The French familial hypercholesterolemia registry. Atherosclerosis. 2018;277:334-340. doi: 10.1016/j.atherosclerosis.2018.08.010
- Al-Enezi MS. Assessment of the correlation between arterial lumen density and its metabolic activity in atherosclerotic patients using 18F-FDG positron emission tomography/ computed tomography. Am J Nucl Med Mol Imaging. 2023;13(1):18-25.
- Blomberg BA, de Jong PA, Thomassen A, et al. Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: Results of the CAMONA study. Eur J Nucl Med Mol Imaging. 2017;44(2):249-258. doi: 10.1007/s00259-016-3552-9
- Al-Enezi MS, Bentourkia M. PET-18F-FDG Pharmacokinetic Modeling Without Blood Sampling in Arteries with Atherosclerosis. In: 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Boston, MA, USA: IEEE, 2020. p1-3. doi: 10.1109/NSS/MIC42677.2020.9507855
- Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311(3):271-278. doi: 10.1001/jama.2013.282535
- Razavi AC, Whelton SP, Blumenthal RS, Blaha MJ, Dzaye O. Beyond the Agatston calcium score: Role of calcium density and other calcified plaque markers for cardiovascular disease prediction. Curr Opin Cardiol. 2025;40(1):56-62. doi: 10.1097/HCO.0000000000001185
- Lairez O, Hyafil F. A clinical role of PET in atherosclerosis and vulnerable plaques? Semin Nucl Med. 2020;50(4):311-318. doi: 10.1053/j.semnuclmed.2020.02.017
- Al-Enezi MS. Arterial tissue-to-psoas muscle ratio: A novel metric for quantifying fluorodeoxyglucose uptake in predicting the association between atherosclerotic inflammation and arterial calcification. Eurasian J Med Oncol. 2025;9(1):214-222. doi: 10.36922/ejmo.7727
- Okamura Y, Nakanishi R, Hashimoto H, Mizumura S, Homma S, Ikeda T. Relationship Between 18F-fluorodeoxyglucose uptake on positron emission tomography and aortic calcification. Ann Nucl Cardiol. 2022;8(1):57-66. doi: 10.17996/anc.22-00160
- Høilund-Carlsen PF, Piri R, Madsen PL, et al. Atherosclerosis burdens in diabetes mellitus: Assessment by PET imaging. Int J Mol Sci. 2022;23(18):10268. doi: 10.3390/ijms231810268
- Bucerius J, Hyafil F, Verberne HJ, et al. Position paper of the cardiovascular committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 2016;43(4):780-792. doi: 10.1007/s00259-015-3259-3
- Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Comput Vision. 1997;22:61-79. doi: 10.1109/ICCV.1995.466871
- Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr., Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827-832. doi: 10.1016/0735-1097(90)90282-t
- Ohya M, Otani H, Kimura K, et al. Vascular calcification estimated by aortic calcification area index is a significant predictive parameter of cardiovascular mortality in hemodialysis patients. Clin Exp Nephrol. 2011;15(6):877-883. doi: 10.1007/s10157-011-0517-y
- Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: Principle and validation. J Nucl Med. 1998;39(5):904-911.
- Burger C, Buck A. Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med. 1997;38(11):1818-1823.
- Guo N, Lang L, Gao H, et al. Quantitative analysis and parametric imaging of 18F-labeled monomeric and dimeric RGD peptides using compartment model. Mol Imaging Biol. 2012;14(6):743-752. doi: 10.1007/s11307-012-0541-7
- Graham MM, Muzi M, Spence AM, et al. The FDG lumped constant in normal human brain. J Nucl Med. 2002;43(9):1157-1166.
- Al-Enezi MS, Bentourkia M. Kinetic modeling of dynamic PET-18F-FDG atherosclerosis without blood sampling. IEEE Trans Radiat Plasma Med Sci. 2020;4(6):729-734. doi: 10.1109/TRPMS.2020.3005364
- Galli G, Indovina L, Calcagni ML, Mansi L, Giordano A. The quantification with FDG as seen by a physician. Nucl Med Biol. 2013;40(6):720-730. doi: 10.1016/j.nucmedbio.2013.06.009
- Torizuka T, Nobezawa S, Momiki S, et al. Short dynamic FDG-PET imaging protocol for patients with lung cancer. Eur J Nucl Med. 2000;27(10):1538-1542. doi: 10.1007/s002590000312
- Strauss LG, Dimitrakopoulou-Strauss A, Haberkorn U. Shortened PET data acquisition protocol for the quantification of 18F-FDG kinetics. J Nucl Med. 2003;44(12):1933-1939.
- Dimitrakopoulou-Strauss A, Pan L, Strauss LG. Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients. Cancer Imaging. 2012;12(1):283-289. doi: 10.1102/1470-7330.2012.0033
- Cai D, He Y, Yu H, Zhang Y, Shi H. Comparative benefits of Ki and SUV images in lesion detection during PET/CT imaging. EJNMMI Res. 2024;14(1):98. doi: 10.1186/s13550-024-01162-x
- Bertoglio D, Deleye S, Miranda A, Stroobants S, Staelens S, Verhaeghe J. Estimation of the net influx rate Ki and the cerebral metabolic rate of glucose MRglc using a single static [18F]FDG PET scan in rats. Neuroimage. 2021;233:117961. doi: 10.1016/j.neuroimage.2021.117961
- Wang R, Chen H, Fan C. Impacts of time interval on 18F-FDG uptake for PET/CT in normal organs: A systematic review. Medicine (Baltimore). 2018;97(45):e13122. doi: 10.1097/MD.0000000000013122
- Chen W, Dilsizian V. PET assessment of vascular inflammation and atherosclerotic plaques: SUV or TBR? J Nucl Med. 2015;56(4):503-504. doi: 10.2967/jnumed.115.154385
- Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A. 18F FDG uptake in the large arteries: A correlation study with the atherogenic risk factors. Semin Nucl Med. 2002;32(1):70-76. doi: 10.1053/snuc.2002.29279
- Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/ CT: Possible finding for active atherosclerosis. Radiology. 2003;229(3):831-837. doi: 10.1148/radiol.2293021168
- Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med. 2004;45(11):1816-1821.
- Santos RD. Calcified and noncalcified coronary plaques and atherosclerotic cardiovascular events in patients with severe hypercholesterolemia-moving forward with risk stratification and therapy. JAMA Netw Open. 2022;5(2):e2148147. doi: 10.1001/jamanetworkopen.2021.48147
- Cahalane R, Akyildiz A, Kavousi M, et al. Cross-sectional validation of a novel computed tomography-based carotid mean calcium density measurement. J Am Heart Assoc. 2023;12(13):e027866. doi: 10.1161/JAHA.122.027866
- Criqui MH, Knox JB, Denenberg JO, et al. Coronary artery calcium volume and density: Potential interactions and overall predictive value: The multi-ethnic study of atherosclerosis. JACC Cardiovasc Imaging. 2017;10(8):845-854. doi: 10.1016/j.jcmg.2017.04.018
- Razavi AC, van Assen M, De Cecco CN, et al. Discordance between coronary artery calcium area and density predicts long-term atherosclerotic cardiovascular disease risk. JACC Cardiovasc Imaging. 2022;15(11):1929-1940. doi: 10.1016/j.jcmg.2022.06.007
- Rozie S, de Weert TT, de MonyéC, et al. Atherosclerotic plaque volume and composition in symptomatic carotid arteries assessed with multidetector CT angiography; relationship with severity of stenosis and cardiovascular risk factors. Eur Radiol. 2009;19(9):2294-2301. doi: 10.1007/s00330-009-1394-6
- Allison MA, Criqui MH, Wright CM. Patterns and risk factors for systemic calcified atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(2):331-336. doi: 10.1161/01.ATV.0000110786.02097.0c
- Kronmal RA, McClelland RL, Detrano R, et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2007;115(21):2722-2730. doi: 10.1161/CIRCULATIONAHA.106.674143
- Al Helali S, Hanif MA, Alshugair N, et al. Associations between hypothyroidism and subclinical atherosclerosis among male and female patients without clinical disease referred to computed tomography. Endocr Pract. 2023;29(12):935-941. doi: 10.1016/j.eprac.2023.08.012
- Chen W, Bural GG, Torigian DA, Rader DJ, Alavi A. Emerging role of FDG-PET/CT in assessing atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging. 2009;36(1):144-151. doi: 10.1007/s00259-008-0947-2
- Ahlman MA, Grayson PC. Advanced molecular imaging in large-vessel vasculitis: Adopting FDG-PET into a clinical workflow. Best Pract Res Clin Rheumatol. 2023;37(1):101856. doi: 10.1016/j.berh.2023.101856
- Srivastava RAK. A Review of progress on targeting LDL receptor-dependent and -independent pathways for the treatment of hypercholesterolemia, a major risk factor of ASCVD. Cells. 2023;12(12):1648. doi: 10.3390/cells12121648
- Padro T, Escate R, Perez De Isla L, et al. miRNA signature related to atherosclerotic lesion induced shear stress modifications in familial hypercholesterolemia patients with subclinical atherosclerosis: A bioinformatics systems biology study. Cardiovasc Res, 2024;120(Supplement_1):cvae088.170. doi: 10.1093/cvr/cvae088.170
- Razavi AC, Kim C, van Assen M, et al. Thoracic aortic calcium density and area in long-term atherosclerotic cardiovascular disease risk among men versus women. Circ Cardiovasc Imaging. 2023;16(12):e015690. doi: 10.1161/CIRCIMAGING.123.015690