Carbon storage in the aboveground biomass of the dipterocarp forest, University of Phayao, Phayao, Thailand

Forests play a crucial role in global carbon cycling by sequestering atmospheric carbon dioxide in their biomass, with dipterocarp forests recognized as one of the most important carbon sinks in tropical Asia. This study aims to determine carbon storage in the aboveground biomass of the dipterocarp forest at the University of Phayao, Phayao, Thailand, using an allometric equation, comparison of carbon sequestration across tree species, and social data analysis. Field data were collected across approximately 4,800 m2 by establishing three sampling plots. The biomass area calculation was performed to evaluate carbon storage and analyze the elements and importance of plants (important value index [IVI]). The results identified 943 trees belonging to 18 families and 41 species across the three studied stations, with an estimated carbon storage of 49.02 t C/ha in the total area of the University of Phayao. In addition, the tree species with the highest IVI was Dipterocarpus tuberculatus Roxb. (77.40%), followed by Shorea obtusa Wall. ex Blume. (64.76%), Pentacme siamensis (Miq.) Kurz. (37.59%), and Dipterocarpus obtusifolius Teijsm. ex Miq. (23.04%). Species diversity was measured at 2.19, species richness at 6.86, and species evenness at 0.59. The relationship between physical factors and carbon storage was inversely correlated at a correlation coefficient of −0.33, indicating a moderate negative relationship. Overall, the findings highlight the ecological importance of the dipterocarp forest at the University of Phayao as both a reservoir of biodiversity and a significant contributor to carbon storage, emphasizing its role in climate change mitigation and sustainable forest management.
- Widiyatno W, Hidayati F, Hardiwinoto S, et al. Selection of dipterocarp species for enrichment planting in a secondary tropical rainforest. Forest Sci Technol. 2020;16(4):206-215. doi: 10.1080/21580103.2020.1831620
- Luo W, Strijk JS, Barstow M, Wee AK. The role of protected areas in tropical tree conservation post-2020: A case study using threatened Dipterocarpaceae. Biol Conserv. 2022;272:109634. doi: 10.1016/j.biocon.2022.109634
- Cvetković T, Hinsinger DD, Thomas DC, Wieringa JJ, Velautham E, Strijk JS. Phylogenomics and a revised tribal classification of subfamily Dipterocarpoideae (Dipterocarpaceae). Taxon. 2022;71(1):85-102. doi: 10.1002/tax.12648
- Romadini NP, Indrioko S, Widiyatno W, Faridah E. Regeneration failure and seedling growth of Dipterocarpus gracilis, a vulnerable dipterocarp in a tropical monsoon forest in Central Java, Indonesia. Biodivers J Biol Divers. 2022;23(9):4928-4939. doi: 10.13057/biodiv/d230963
- Asanok L, Taweesuk R, Kamyo T. Plant functional diversity is linked to carbon storage in deciduous dipterocarp forest edges in Northern Thailand. Sustainability. 2021;13(20):11416. doi: 10.3390/su132011416
- Das S, Nama A, Deb S, Sahoo UK. Soil quality, carbon stock and climate change mitigation potential of Dipterocarp natural and planted forests of Tripura, Northeast India. Vegetos. 2023;36(3):1105-1118. doi: 10.1007/s42535-022-00515-y
- Plybour C, Laosuwan T, Uttaruk Y, et al. An investigation of plant species diversity, above-ground biomass, and carbon stock: Insights from a dry dipterocarp forest case study. Diversity. 2025;17(6):428. doi: 10.3390/d17060428
- Gabric AJ. The climate change crisis: A review of its causes and possible responses. Atmosphere. 2023;14(7):1081. doi: 10.3390/atmos14071081
- Audi M, Ali A, Kassem M. Greenhouse gases: A review of losses and benefits. Int J Energy Econ Policy. 2020;10(1):403-418. doi: 10.32479/ijeep.8416
- Prudil J, Pospíšilová L, Dryšlová T, et al. Assessment of carbon sequestration as affected by different management practices using the RothC model. Plant Soil Environ. 2023;69(11):532-544. doi: 10.17221/291/2023-PSE
- Dagiliūtė R, Kazanavičiūtė V. Impact of land-use changes on climate change mitigation goals. The Case of Lithuania. Land. 2024;13(2):131. doi: 10.3390/land13020131
- Nunes LJ, Meireles CI, Pinto Gomes CJ, Almeida Ribeiro NM., Forest contribution to climate change mitigation: Management oriented to carbon capture and storage. Climate. 2020;8(2):21. doi: 10.3390/cli8020021
- Kabir M, Habiba UE, Khan W, et al. Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. J King Saud Univ Sci. 2023;35(5):102693. doi: 10.1016/j.jksus.2023.102693
- Begum RA, Raihan A, Said MNM. Dynamic impacts of economic growth and forested area on carbon dioxide emissions in Malaysia. Sustainability. 2020;12(22):9375. doi: 10.3390/su12229375
- Raihan A, Begum RA, Mohd Said MN, Pereira JJ. Assessment of carbon stock in forest biomass and emission reduction potential in Malaysia. Forests. 2021;12(10):1294. doi: 10.3390/f12101294
- Besar NA, Suardi H, Phua MH, James D, Mokhtar MB, Ahmed MF. Carbon stock and sequestration potential of an agroforestry system in Sabah, Malaysia. Forests. 2020;11(2):210. doi: 10.3390/f11020210
- Cairns MA, Brown S, Helmer EH, Baumgardner GA. Root biomass allocation in the world’s upland forests. Oecologia. 1997;111:1-11. doi: 10.1007/s004420050201
- Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1949;27(3):379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x
- Wolda H. Similarity indices, sample size, and diversity. Oecologia. 1981;50(3):296-302. doi: 10.1007/BF00344966
- Rahman IU, Hart R, Afzal A, et al. A new ethnobiological similarity index for the evaluation of novel use reports. Appl Ecol Environ Res. 2019;17(2):2765-2777. doi: 10.15666/aeer/1702_27652777
- Darmawan A, Warta Z, Molidena E, et al. Aboveground forest carbon stock in protected area: A case study of Bukit Tigapuluh National Park, Indonesia. J Trop Biodivers Biotechnol. 2022;7(1):64827. doi: 10.22146/jtbb.64827
- Ediriweera S, Bandara C, Lakkana T, et al. Old-growth mixed dipterocarp forests show variable losses and gains in aboveground biomass and standing carbon over forty years. Forest Ecosyst. 2024;11:100163. doi: 10.1016/j.fecs.2023.100163
- Khan MA, Spicer RA, Spicer TE, et al. Dipterocarpus (Dipterocarpaceae) leaves from the K-Pg of India: A cretaceous gondwana presence of the Dipterocarpaceae. Plant Syst Evol. 2020;306:1-18. doi: 10.1007/s00606-020-01718-z
- Malik N, Edwards D, Freckleton RP. Comparative analyses and phylogenetic dependence in traits and trends of the dipterocarpaceae. Ecol Evol. 2025;15(1):e70784. doi: 10.1002/ece3.70784
- Thichan T, Anongrak N, Khamyong S, Kachina P. Restoration of water storage potential in a degraded dry dipterocarp forest with enrichment planting of three needle pine (Pinus kesiya Royle ex Gordon), Northern Thailand. Environ Nat Resour J. 2021;19(1):10-23. doi: 10.32526/ennrj/19/2020130
- Harnelly E, Fitri I, Kusuma HI. Assessing dipterocarp diversity at soraya research station, leuser ecosystem. J Penelitian Pendidikan. 2025;11(4):1-9. doi: 10.29303/jppipa.v11i4.10599
- Kaewfoo M, Bunyavejchewin S, Marod D, et al. Termitaria enhance soil and forest diversity in deciduous dipterocarp forest, Northern Thailand. J Trop Ecol. 2024;40:e5. doi: 10.1017/S0266467423000342
- Susilowati A, Rachmat HH, Elfiati D, et al. Floristic composition and diversity at keruing (Dipterocarpus spp.) habitat in tangkahan, gunung leuser national park, indonesia. Biodivers J Biol Divers. 2021;22(10):4448-4456. doi: 10.13057/biodiv/d221038
- Das SC, Alam MS, Hossain MA. Diversity and structural composition of species in dipterocarp forests: A study from Fasiakhali Wildlife Sanctuary, Bangladesh. J Forest Res. 2018;29:1241-1249. doi: 10.1007/s11676-017-0548-7
- Idris A, Linatoc AC, Takai ZI. Carbon storage in relation to plant species of lowland dipterocarp vegetation of Gunung Ledang, Malaysia. Dutse J Pure Appl Sci. 2024;10(4c):158-165. doi: 10.4314/dujopas.v10i4c.15
- Indrajaya Y, Mulyana S. Carbon stored in tree biomass of Cigerendeng Research Forest, Ciamis, West Java. IOP Conf Ser Earth Environ Sci. 2020;487(1):012004. doi: 10.1088/1755-1315/487/1/012004
- Zhao M, Sun M, Xiong T, Tian S, Liu S. On the link between tree size and ecosystem carbon sequestration capacity across continental forests. Ecosphere. 2022;13(6):e4079. doi: 10.1002/ecs2.4079
- Ma SH, Eziz A, Tian D, et al. Size-and age-dependent increases in tree stem carbon concentration: Implications for forest carbon stock estimations. J Plant Ecol. 2020;13(2):233-240. doi: 10.1093/jpe/rtaa005
- Dullah H, Malek MA, Omar H, Mangi SA, Hanafiah MM. Assessing changes of carbon stock in dipterocarp forest due to hydro-electric dam construction in Malaysia. Environ Sci Pollut Res. 2021;28:44264-44276. doi: 10.1007/s11356-021-13833-6
- Case MJ, Johnson BG, Bartowitz KJ, Hudiburg TW. Forests of the future: Climate change impacts and implications for carbon storage in the Pacific Northwest, USA. Forest Ecol Manag. 2021;482:118886. doi: 10.1016/j.foreco.2020.118886
- Bargali H, Pandey A, Bhatt D, Sundriyal RC. Loss of carbon stock in the forests of Uttarakhand due to unprecedented seasonal forest fires. Front Forests Glob Change. 2024;7:1352265. doi: 10.3389/ffgc.2024.1352265
- Zhou R, Li W, Zhang Y, et al. Responses of the carbon storage and sequestration potential of forest vegetation to temperature increases in Yunnan Province, SW China. Forests. 2018;9(5):227. doi: 10.3390/f9050227
- Li B, Gao G, Luo Y, Xu M, Liu G, Fu B. Carbon stock and sequestration of planted and natural forests along climate gradient in water-limited area: A synthesis in the China’s Loess plateau. Agric Forest Meteorol. 2023;333:109419. doi: 10.1016/j.agrformet.2023.109419
- Gong C, Tan Q, Liu G, Xu M. Forest thinning increases soil carbon stocks in China. Forest Ecol Manag. 2021;482:118812. doi: 10.1016/j.foreco.2020.118812
- Duangthip N, Anongrak N, Kachina P, Khamyong S. Plant community structure and carbon storage in a dry Dipterocarp community forest with using Dipterocarpus tuberculatus Roxb. leaves as forest product, Northern Thailand. Thai Forest Ecol Res J. 2022;6(1):13-30.