AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025230190
REVIEW ARTICLE

Sustainable soybean cultivation using nitrogen-fixing bacteria and humic products derived from agricultural waste: A review

Yurii Syromiatnykov*
Show Less
1 Institute of Soil and Plant Sciences, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, Jelgava, Zemgale Region, Latvia
Received: 8 June 2025 | Revised: 9 July 2025 | Accepted: 16 July 2025 | Published online: 27 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Sustainable intensification of legume-based cropping systems requires innovative strategies that enhance nitrogen fixation and nutrient use efficiency while minimizing environmental impacts. This review examines the co-application of nitrogen-fixing bacteria and humic substances derived from agricultural waste as an integrated biotechnological approach to support sustainable soybean production. The review also summarizes key roles of microbial inoculants, such as Bradyrhizobium, Azospirillum, and Pseudomonas (Ps), and the agronomic functions of humic acids, fulvic acids, and humin compounds. When applied separately, these biostimulants improve nodulation, nutrient uptake, and soil health. When combined, they demonstrate synergistic effects—improving nitrogen-use efficiency, drought tolerance, and crop yield. Mechanisms driving these outcomes include enhanced microbial colonization, micronutrient chelation, hormonal modulation, and antioxidant activity. In addition, the review considers challenges including soil pH variability, native microbial competition, product standardization, and formulation compatibility. Recent advances in encapsulated inoculants and hydrothermal humification methods demonstrate promise for improving bioavailability and resilience. Environmental benefits include reduced nitrate leaching, increased soil organic matter, and alignment with circular bioeconomy principles through the valorization of organic waste. Despite barriers, such as formulation variability, limited precision delivery systems, and regulatory gaps, the integration of microbial and humic inputs offers a scalable, eco-friendly alternative to synthetic fertilizers. Future research should focus on molecular characterization, genotype-strain matching, and long-term field validation to ensure robust performance across agroecological zones. Finally, this review provides a comprehensive synthesis for researchers, agronomists, and policymakers seeking to improve the ecological and economic sustainability of soybean production through advanced biotechnological interventions.

Keywords
Nitrogen-fixing bacteria
Humic substances
Soybean
Biological nitrogen fixation
Sustainable agriculture
Microbial inoculants
Funding
This work was supported by the project “Strengthening Institutional Capacity for Excellence in Studies and Research at the Latvia University of Life Sciences and Technologies” (Project No. 5.2.1.1.i.0/2/24/I/ CFLA/002), funded by the European Union through the NextGenerationEU program under the Recovery and Resilience Facility, within the framework of the National Development Plan of Latvia for 2021–2027, and administered by the Central Finance and Contracting Agency of Latvia.
Conflict of interest
The author declares no competing interests.
References
  1. Ishaq Z, Machido DA, Atta HI. Isolation and enumeration of Bradyrhizobium species dwelling in the root nodules of soybean plant. UMYU J Microbiol Res. 2020;5(2):17-25. doi: 10.47430/ujmr.2052.003

 

  1. Da Silva MSR, dos Santos BM, Chávez DW, et al. K-humate as an agricultural alternative to increase nodulation of soybeans inoculated with Bradyrhizobium. Biocatal Agric Biotechnol. 2021;36:102129. doi: 10.1016/j.bcab.2021.102129

 

  1. Campo RJ, Araujo RS, Hungria M. Nitrogen fixation with the soybean crop in Brazil: compatibility between seed treatment with fungicides and Bradyrhizobial inoculants. Symbiosis. 2009;48(1-3):154-163. doi: 10.1007/BF03179994

 

  1. Syromiatnykov Y, Khalilov N, Troyanovskaya I, et al. Dynamics of agrophysical parameters and corn yield under minimum tillage in Samarkand region. Acta Technol Agric. 2025;28(2):80-87. doi: 10.2478/ata-2025-0011

 

  1. Erniyani K. Effectiveness of Bradyrhizobium japonicum Strains Isolated from Several Locations in Ende on Nodule Formation and Nitrogen Fixation in Soybean (Glycine max L.). AGRIFOR. 2020;3(2):138-150. doi: 10.37478/agr.v3i2.501

 

  1. Kurdali F, Nabulsi I, Mirali N. Nitrogen fixation in mutant soybean lines inoculated with two Bradyrhizobium japonicum strains. Agrochimica. 2005;49(5-6):233-245.

 

  1. Pashchenko VF, Syromyatnikov YUN. The transporting ability of the rotor of the soil cultivating loosening and separating vehicle. Tractors Agric Mach. 2019;86(2):67-74. doi: 10.31992/0321-4443-2019-2-67-74

 

  1. Perin J, Bertéli MBD, Valle JS, et al. Characterization of aapP and nopP genes related to nitrogen fixation efficiency with soybean in Bradyrhizobium japonicum. Genet Mol Res. 2018;17(3):gmr16039867. doi: 10.4238/GMR16039867

 

  1. Klepa MS, diCenzo G, Hungria M. Comparative genomic analysis of Bradyrhizobium strains with natural variability in nitrogen fixation. Microbiol Spectr. 2024;12(2):e00260-24. doi: 10.1128/spectrum.00260-24

 

  1. Agoyi EE, Afutu E, Chadare FJ, et al. Ureide assay to assess N2 fixation abilities of soybean genotypes under different Bradyrhizobium strains. J Crop Sci Biotechnol. 2017;20(2):65-72. doi: 10.1007/s12892-016-0132-0

 

  1. Kucey RMN, Snitwongse P, Chaiwanakupt P, et al. Nitrogen fixation (15N dilution) with soybeans under Thai field conditions. Plant Soil. 1988;106(1):87-92. doi: 10.1007/BF02370103

 

  1. Maluk M, Giles M, Wardell GE, et al. Biological nitrogen fixation by soybean in Scotland requires inoculation with non-native Bradyrhizobium. Front Agron. 2023;5:1196873. doi: 10.3389/fagro.2023.1196873

 

  1. Praharaj C, Dhingra K. Growth and nitrogen fixation in soybean under Bradyrhizobium inoculation and nitrogen schedules. Indian J Agron. 2001;46(1):110-116.

 

  1. Keyser HH, Li F. Potential for increasing biological nitrogen fixation in soybean. Plant Soil. 1992;141(1-2):119-135. doi: 10.1007/BF00011313

 

  1. Barros Carvalho GA, Hungria M, Lopes FM, et al. Brazilian adapted soybean Bradyrhizobium strains uncover IS elements impacting nitrogen fixation. FEMS Microbiol Lett. 2019;366(11):fnz046. doi: 10.1093/femsle/fnz046

 

  1. Delamuta JRM, Ribeiro RA, Ormeño Orrillo E, et al. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov. Int J Syst Evol Microbiol. 2015;65(12):4424-4433. doi: 10.1099/ijsem.0.000592

 

  1. Bender FR, Nagamatsu S, Delamuta JRM, et al. Genetic variation in symbiotic islands of Bradyrhizobium strains. Microb Genom. 2022;8(11):000795. doi: 10.1099/mgen.0.000795

 

  1. Abaidoo RC, Keyser HH, Singleton PW, Dashiell KE, Sanginga N. Population size and symbiotic characteristics of indigenous Bradyrhizobium spp. Appl Soil Ecol. 2007;35(1):57-67. doi: 10.1016/j.apsoil.2006.05.006

 

  1. Syromyatnikov Y, Troyanovskaya I, Zagidullin R, Tikhonov E, Orekhovskaya A. Soil density in traditional mouldboard tillage. Acta Technol Agric. 2023;26(3):159-165. doi: 10.2478/ata-2023-0021

 

  1. Syromiatnykov Y, Ishniyazova S, Voinash S, et al. Effectiveness of compositions based on thiosulfonates and biosurfactants for plant protection against phytopathogens. E3S Web Conf. 2025;613:e02002. doi: 10.1051/e3sconf/202561302002

 

  1. Zahran HH. Rhizobium-legume symbiosis and nitrogen fixation under stress. Microbiol Mol Biol Rev. 1999;63(4):968-989. doi: 10.1128/MMBR.63.4.968989.1999

 

  1. Giller KE. Nitrogen Fixation in Tropical Cropping Systems. Wallingford, UK: CABI Publishing; 2001. doi: 10.1079/9780851994178.0000

 

  1. Syromyatnikov YN, Orekhovskaya AA, Dzjasheev A, et al. Cultivator points of the rotary tillage loosening and separating machine of the stratifier. J Phys Conf Ser. 2021;2094(4):042024. doi: 10.1088/1742-6596/2094/4/042024

 

  1. Dakora FD, Keya SO. Contribution of legume nitrogen fixation to sustainable agriculture in sub‐Saharan Africa. Soil Biol Biochem. 1997;29(5-6):809-817. doi: 10.1016/S0038-0717(96)00225-8

 

  1. Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agriculture. Plant Soil. 2008;311(1-2):1-18. doi: 10.1007/s11104-008-9668-3

 

  1. Okogun JA, Sanginga N. Can indigenous and introduced rhizobial strains compete? Biol Fertil Soils. 2003;38(1):26-31. doi: 10.1007/s00374-003-0613-2

 

  1. Xavier GR, Martins LMV, Lisboa RS, et al. Selection of indigenous Bradyrhizobium strains. Braz J Microbiol. 2003;34(1):88-94. doi: 10.1590/S1517-83822003000100016

 

  1. Deaker R, Roughley RJ, Kennedy IR. Legume seed inoculation technology. Soil Biol Biochem. 2004;36(8):1275-1288. doi: 10.1016/j.soilbio.2004.04.009

 

  1. Costa EM, Ribeiro PRA, Carvalho TS, et al. Efficient nitrogen fixing bacteria isolated from soybean nodules in the semi-arid region of northeast Brazil are classified as Bradyrhizobium brasilense (symbiovar sojae). Curr Microbiol. 2020;77(6):1746-1755. doi: 10.1007/s00284-020-01993-6

 

  1. Chibeba AM, Guimarães MF, Brito OR, et al. Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am J Plant Sci. 2015;6(10):1641-1649. doi: 10.4236/ajps.2015.610164

 

  1. Maffia A, Oliva M, Marra F, Mallamaci C, Nardi S, Muscolo A. Humic substances: Bridging ecology and agriculture for a greener future. Agronomy. 2025;15(2):410. doi: 10.3390/agronomy15020410

 

  1. Canellas LP, Canellas NOA, Olivares FL. Biostimulants using humic substances and rhizosphere microorganisms. Sci Agric. 2022;79(Suppl 1):e20220103. doi: 10.1590/1678-992X-2022-0103

 

  1. Galal YGM. Dual inoculation with strains of Bradyrhizobium japonicum and Azospirillum brasilense to improve growth and biological nitrogen fixation of soybean. Biol Fertil Soils. 1997;24(4):317-322. doi: 10.1007/s003740050250

 

  1. Neto VPC, Melo ARP, Alencar CES, et al. Bacterial consortia among Bradyrhizobium, Azospirillum, and Bacillus promote plant growth and nitrogen fixation in mung bean. Symbiosis. 2024;82(1):1-11. doi: 10.1007/s13199-024-01003-4

 

  1. Hungria M, Nogueira MA, Araujo RS. Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A new biotechnological tool. Am J Plant Sci. 2015;6(6):811-817. doi: 10.4236/ajps.2015.66087

 

  1. Deák ÉA, Martin TN, Stecca JDL, et al. Sulfur fertilization and inoculation with Azospirillum brasilense and Bradyrhizobium spp. improve yield and quality. Braz J Microbiol. 2024;55(1):87-98. doi: 10.1007/s42770-024-01585-7

 

  1. Silva AP, Braccini AL, Felber PH, Marteli DCV, Fagotti DDS, dos Santos RF. Evaluation of methods for inoculating soybean seeds with Bradyrhizobium spp. and Azospirillum brasilense. Rev Agroneg Meio Ambient. 2024;17(2):119-132. doi: 10.17765/2176-9168.2024v17n2e11948

 

  1. Dozet G. Microbial activity of soil during inoculation of soybean with symbiotic and free-living nitrogen-fixing bacteria. Afr J Biotechnol. 2012;11(20):2850-2862. doi: 10.5897/ajb11.744

 

  1. Garcia MVC, Nogueira MA, Hungria M. Combining microorganisms in inoculants: Composite inoculant case for soybean. AMB Express. 2021;11(1):127. doi: 10.1186/s13568-021-01230-8

 

  1. Galindo FS, Pagliari PH, da Silva EC, et al. Co-inoculation with Azospirillum brasilense and Bradyrhizobium sp. enhances nitrogen uptake and yield in field-grown cowpea and did not change N fertilizer recovery. Plants. 2022;11(14):1847. doi: 10.3390/plants11141847

 

  1. Vauclare P, Bligny R, Gout E, Widmer F. Metabolic differences in Bradyrhizobium japonicum and soybean bacteroids. FEMS Microbiol Lett. 2013;343(1):49-56. doi: 10.1111/1574-6968.12124

 

  1. Abreu Junior CH, Gruberger GAC, Cardoso PHS, et al. Soybean seed enrichment with cobalt and molybdenum as an alternative to conventional seed treatment. Plants. 2023;12(5):1164. doi: 10.3390/plants12051164

 

  1. Zydlik Z, Zydlik P. The effect of a preparation containing humic acids on the growth, yield, and quality of strawberry fruits (Fragaria × ananassa). Agronomy. 2023;13(7):1872. doi: 10.3390/agronomy13071872

 

  1. Zydlik P, Zydlik Z, Kafkas NE. The effect of the foliar application of biostimulants in a strawberry field plantation on the yield and quality of fruit, and on the content of health-beneficial substances. Agronomy. 2024;14(8):1786. doi: 10.3390/agronomy14081786

 

  1. Sibponkrung S, Kondo T, Tanaka K, et al. Co-inoculation of Bacillus velezensis strain S141 and Bradyrhizobium strains promotes nodule growth and nitrogen fixation. Microorganisms. 2020;8(5):678. doi: 10.3390/microorganisms8050678

 

  1. Pisarek I, Grata K. The influence of sewage sludge and fly ash fertilization on the total number of bacteria (TNB) and Bradyrhizobium species in soybean agroecosystem. Agriculture. 2023;13(1):201-206. doi: 10.3390/agriculture13010201

 

  1. Vorobey N, Kukol K, Pukhtaievych P, Kots S. Complex inoculation of soybeans with nodule bacteria Bradyrhizobium japonicum as a measure to optimize symbiotic nitrogen fixation. Agric Microbiol. 2023;38(1):29-39. doi: 10.35868/1997-3004.38.29-39

 

  1. Klūga A, Dubova L, Alsiņa I, Rostoks N. Alpha-, gamma- and beta-proteobacteria detected in legume nodules in Latvia, using full-length 16S rRNA gene sequencing. Acta Agric Scand B Soil Plant Sci. 2023;73(1):127-141. doi: 10.1080/09064710.2023.2232681

 

  1. Waluyo SH. Biological Nitrogen Fixation of Soybean in Acid Soils of Sumatra, Indonesia [dissertation]; 2000.

 

  1. Księżak J, Bojarszczuk J. The effect of mineral N fertilization and Bradyrhizobium japonicum seed inoculation on productivity of soybean (Glycine max (L.) Merrill). Agriculture. 2022;12(1):110. doi: 10.3390/agriculture12010110

 

  1. Htwe AZ, Moh SM, Moe K, Yamakawa T. Effects of co-inoculation of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 on plant growth, nodulation, nitrogen fixation, nutrient uptake, and yield of soybean in a field condition. Soil Sci Plant Nutr. 2018;64(2):222-229. doi: 10.1080/00380768.2017.1421436

 

  1. Koliada O, Bliznjuk O, Masalitina N, Belinska A, Varankina O, Belykh I. Case study of soybean inoculation with biotechnological preparations. Integr Technol Energy Saving. 2022;3:1. doi: 10.20998/2078-5364.2022.3.01

 

  1. Hatipoğlu H, Haliloğlu H. Nitrogen application and seed inoculation with Bradyrhizobium japonicum bacteria improved yield and quality traits of soybean grown as second crop. Pol J Environ Stud. 2024;33(1):0256. doi: 10.15244/pjoes/192372

 

  1. Pacheco da Silva ML, Moen FS, Liles MR, Feng Y, Sanz Saez A. The response to inoculation with PGPR plus orange peel amendment on soybean is cultivar and environment dependent. Plants. 2022;11(9):1138. doi: 10.3390/plants11091138

 

  1. Beregovaya YV, Tychinskaya I, Petrova S, et al. Cultivar specificity of the rhizobacterial effects on nitrogen-fixing symbiosis and mineral nutrition of soybean under agrocenosis conditions. Sel’skokhozyaist Biol. 2018;53(5):977-985. doi: 10.15389/agrobiology.2018.5.977eng

 

  1. Banasiewicz J, Gumowska A, Hołubek A, Orzechowski S. Adaptations of the genus Bradyrhizobium to selected elements, heavy metals and pesticides present in the soil environment. Curr Issues Mol Biol. 2025;47(3):205. doi: 10.3390/cimb47030205

 

  1. Di Sario L, Boeri P, Matus JT, Pizzio GA. Plant biostimulants to enhance abiotic stress resilience in crops. Int J Mol Sci. 2025;26(3):1129. doi: 10.3390/ijms26031129

 

  1. Matuszak-Slamani R, Bejger R, Włodarczyk M, et al. Effect of humic acids on soybean seedling growth under polyethylene glycol 6000-induced drought stress. Agronomy. 2022;12(5):1109. doi: 10.3390/agronomy12051109

 

  1. Rodrigues Prates A, Coscione ARC, Teixeira Filho MM, et al. Composted sewage sludge enhances soybean production and agronomic performance in naturally infertile soils (Cerrado region, Brazil). Agronomy. 2020;10(11):1677. doi: 10.3390/agronomy10111677

 

  1. Ntanasi T, Karavidas I, Spyrou GP, et al. Plant biostimulants enhance tomato resilience to salinity stress: insights from two Greek landraces. Plants. 2024;13(10):1404. doi: 10.3390/plants13101404

 

  1. Egamberdiyeva D, Qarshieva D, Davranov K. Growth and yield of soybean varieties inoculated with Bradyrhizobium spp in N-deficient calcareous soils. Biol Fertil Soils. 2004;40:144-146. doi: 10.1007/s00374-004-0755-1

 

  1. Holatko J, Hammerschmiedt T, Latal O, et al. Deciphering the effectiveness of humic substances and biochar modified digestates on soil quality and plant biomass accumulation. Agronomy. 2022;12(7):1587. doi: 10.3390/agronomy12071587

 

  1. Perez Fernández M, De Lara Del Rey IA, Magadlela A. Shining a light on symbiosis: N fixing bacteria boost legume growth under varied light conditions. Agriculture. 2024;14(2):164. doi: 10.3390/agriculture14020164

 

  1. Grobelak A, Bień B, Sławczyk D, Bień J. Conditioning biomass for biogas plants: innovative pre-treatment and digestate valorization techniques to enhance soil health and fertility. Sustainability. 2025;17(8):3289. doi: 10.3390/su17083289

 

  1. Peng XX, Cheng K, Yuan Y, et al. Foliar application of iron strengthened artificial humic acid promotes nitrogen fixation and improves soybean yield. Ind Crops Prod. 2025;224:120368. doi: 10.1016/j.indcrop.2024.120368

 

  1. Tu T, Lin SH, Shen F. Enhancing symbiotic nitrogen fixation and soybean growth through co-inoculation with Bradyrhizobium and Pseudomonas isolates. Sustainability. 2021;13(20):11539. doi: 10.3390/su132011539

 

  1. Szpunar-Krok E, Bobrecka-Jamro D, Pikuła W, Jańczak- Pieniążek M. Effect of nitrogen fertilization and inoculation with Bradyrhizobium japonicum on nodulation and yielding of soybean. Agronomy. 2023;13(5):1341. doi: 10.3390/agronomy13051341

 

  1. Garcia MVC, Nogueira MA, Hungria M. Combining microorganisms in inoculants is agronomically important but industrially challenging: Case study of a composite inoculant containing Bradyrhizobium and Azospirillum for the soybean crop. AMB Express. 2021;11(1):71. doi: 10.1186/s13568-021-01230-8

 

  1. Alves LA, Ambrosini VG, de Oliveira Denardin LG, et al. Biological N₂fixation by soybeans grown with or without liming on acid soils in a no-till integrated crop-livestock system. Soil Tillage Res. 2021;209:104923. doi: 10.1016/j.still.2020.104923

 

  1. Syromyatnikov YN, Orekhovskaya AA, Dzjasheev A, et al. Improving stability of movement of machine section for soil preparation and seeding. J Phys Conf Ser. 2021;2094(4):042027. doi: 10.1088/1742-6596/2094/4/042027

 

  1. Zotikov VI, Zubareva KY. Application of microbiological preparations in the cultivation of promising soybean varieties in Oryol Oblast. Russ Agric Sci. 2024;50:473-480. doi: 10.3103/S1068367424700496

 

  1. Mazur O, Tymoshchuk T, Didur I, Tsyhanskyi V. Study of legume rhizobia symbiosis in soybean for agroecosystem resilience. Sci Horizons. 2024;11:68. doi: 10.48077/scihor11.2024.68

 

  1. Didora V, Kluchevych M. Soybean productivity depending on the elements of organic cultivation technology in the short term crop rotation of Ukrainian Polissia. Sci Horizons. 2021;24(2):77-83. doi: 10.48077/scihor.24(2).2021.77-83

 

  1. Zimmer S, Messmer M, Haase T, et al. Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur J Agron. 2016;72:38-46. doi: 10.1016/j.eja.2015.09.008

 

  1. Ghadge J, Murumkar D. Inoculation effect of consortium of Rhizobium, PSB and KMB on the growth and yield of soybean. Int J Curr Microbiol Appl Sci. 2020;9(9):1979-1993. doi: 10.20546/ijcmas.2020.909.248

 

  1. Gomes Y, Dalchiavon F, Valadão F. Joint use of fungicides, insecticides and inoculants in the treatment of soybean seeds. Rev Ceres. 2017;64:258-265. doi: 10.1590/0034-737X201764030006

 

  1. Canellas LP, Silva RM, Barbosa LJS, et al. Co-inoculation with Bradyrhizobium and humic substances combined with Herbaspirillum seropedicae promotes soybean vegetative growth and nodulation. Agronomy. 2023;13(10):2660. doi: 10.3390/agronomy13102660

 

  1. Pratiwi GR, Nurrahma AHI. Biochar and humic substances roles for nitrogen transformation in agriculture. J Tek Pert Lampung. 2024;13(4):1442-1452. doi: 10.23960/jtep-l.v13i4.1442-1452

 

  1. Saha B, Saha S, Das A, et al. Biological nitrogen fixation for sustainable agriculture. In: Singh D, Singh H, Prabha R, editors. Plant Microbe Interactions in Agro-Ecological Perspectives. Singapore: Springer; 2017. p. 81-128. doi: 10.1007/978-981-10-5343-6_4

 

  1. Jaiswal SK, Dakora FD. Maximizing photosynthesis and plant growth in African legumes through rhizobial partnerships: The road behind and ahead. Microorganisms. 2025;13(3):581. doi: 10.3390/microorganisms13030581

 

  1. Syromyatnikov Y, Voinash S, Troyanovskaya I, Zagidullin R, Tikhonov E, Orekhovskaya A. Chisel tillage under spring barley in the forest-steppe. Acta Technol Agric. 2024;27(1):30-34. doi: 10.2478/ata-2024-0005

 

  1. Aasfar A, Bargaz A, Yaakoubi K, et al. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front Microbiol. 2021;12:628379. doi: 10.3389/fmicb.2021.628379

 

  1. Hindersah R, Aini RAP, Setiawati M, et al. Boosting strawberry yield and fruit sweetness with humic substances and biofertilizer in soilless cocopeat-based culture. J Ilm Pertanian. 2023;20(3):13242. doi: 10.31849/jip.v20i3.13242

 

  1. De Hita D, Fuentes M, Zamarreño Á, García-Mina JM, Baigorri R. Culturable bacterial endophytes from sedimentary humic acid treated plants. Front Plant Sci. 2020;11:837. doi: 10.3389/fpls.2020.00837

 

  1. Dauletbay A, Hanzheng D, Ongalbek AN, et al. Humic acids: Properties, structure, and application. Bull Shakarim Univ Tech Sci. 2024;3:41. doi: 10.53360/2788-7995-2024-3(15)-41

 

  1. Kong B, Wu Q, Li Y, et al. The application of humic acid urea improves nitrogen use efficiency and crop yield by reducing the nitrogen loss compared with urea. Agriculture. 2022;12(12):1996. doi: 10.3390/agriculture12121996

 

  1. Didora V, Bondar O, Vlasiuk M. Soybeans productivity depending on biological preparations and mineral fertilizers on Ukraine’s Polissia. Sci Horiz. 2019;22(1):33-39. doi: 10.332491/2663-2144-2019-74-1-33-39

 

  1. Kadoglidou KI, Anthimidou E, Krommydas K, et al. Effect of biostimulants on drought tolerance of greenhouse-grown tomato. Horticulturae. 2025;11(6):601. doi: 10.3390/horticulturae11060601

 

  1. Pačuta V, Rašovský M, Michalska-Klimczak B, Wyszyňski Z. Grain yield and quality traits of durum wheat (Triticum durum Desf.) treated with seaweed- and humic acid-based biostimulants. Agronomy. 2021;11(7):1270. doi: 10.3390/agronomy11071270
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing