AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025150112
ORIGINAL RESEARCH ARTICLE

Dynamic monitoring of unconfined and semi-confined aquifers in the Quaternary system of N’Djamena, Chad

Ali Malloum Bada1,2 Mamadou Malloum Ahmat1,2 Mahamat Ali Ataïb1,2 Mackaye Hassane Taïsso1,2 Allag Waayna Souk1,2 Fabien Kenmogne3*
Show Less
1 Department of Geological Engineering (Hydrogeology Option) Hydrochemistry-Hydrology Laboratory, Faculty of Mines and Geology, Polytechnic University of Mongo, Mongo, Chad
2 Department of Geological Engineering (Hydrogeology Option), University of N’Djamena, N’Djamena, Chad
3 Department of Civil Engineering, Advanced Teacher Training College of the Technical Education, The University of Douala, Douala, Cameroon
Received: 11 April 2025 | Revised: 16 July 2025 | Accepted: 22 July 2025 | Published online: 19 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study investigates the spatiotemporal variability of unconfined and semi-confined aquifers in N’Djamena, Chad, based on dynamic monitoring conducted from 2020 to 2024. A total of 40 boreholes—18 in unconfined aquifers and 22 in semi-confined systems—were monitored using piezometers, probes, and GPS instruments during two key periods each year: May (end of the dry season) and November (post-rainy season). Groundwater depths exhibited marked seasonal fluctuations, ranging from 13.5 m to 4.1 m in unconfined aquifers and from 29.1 m to 6.3 m in semi-confined aquifers. Pearson correlation analysis revealed only a moderate relationship with temperature (r = 0.582) and a weak correlation with precipitation (r = 0.390), suggesting that groundwater level variations are not solely or linearly governed by climatic parameters. Instead, they likely result from a combination of thermal influences, delayed infiltration, and lateral recharge through semi-permeable layers. A comparative analysis with the Lake Chad Basin highlighted distinct recharge mechanisms shaped by geological and hydrological contrasts. These findings support differentiated aquifer management strategies—such as using unconfined aquifers for emergency supply and preserving semi-confined aquifers for long-term needs—as well as urban planning interventions, including improved drainage in flood-prone areas such as Sabangali and Gassi. This study contributes to the development of adaptive groundwater governance frameworks in water-stressed and rapidly urbanizing Sahelian environments.

Keywords
Surface water
Renewable aquifer
Quaternary aquifer
Dynamic monitoring
Groundwater levels
Climatic variability
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Sorensen JPR, Davies J, Ebrahim GY, et al. The influence of groundwater abstraction on interpreting climate controls and extreme recharge events from well hydrographs in semi-arid South Africa. Hydrogeol J. 2021;29:2773-2787. doi: 10.1007/s10040-021-02391-3

 

  1. Gaye CB, Tindimugaya C. Challenges and opportunities for sustainable groundwater management in Africa. Hydrogeol J. 2019;27(3):1099-1110. doi: 10.1007/s10040-018-1892-1

 

  1. Neukum C, Morales Santos AG, Ronelngar M, Bala A, Vassolo S. Modelling groundwater recharge, actual evaporation and transpiration in semi-arid sites of the Lake Chad Basin: The role of soil and vegetation on groundwater recharge. Hydrol Earth Syst Sci Discuss. 2023;27:3601-3619. doi: 10.5194/hess-27-3601-2023

 

  1. Cuthbert MO, Taylor RG, Favreau G, et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature. 2019;572(7768):230-234. doi: 10.1038/s41586-019-1441-7

 

  1. Mensah JK, Ofosu EA, Yidana SM, Akpoti K, Kabo- Bah AT. Integrated modeling of hydrological processes and groundwater recharge based on land use land cover, and climate changes: A systematic review. Environ Adv. 2022;8:100224. doi: 10.1016/j.envadv.2022.100224

 

  1. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP, editors. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. Geneva: IPCC Secretariat; 2008. p. 210.

 

  1. Taylor RG, Scanlon BR, Doell P, et al. Ground water and climate change. Nat Clim Change. 2013;3(4):322-329. doi: 10.1038/nclimate1744

 

  1. Sylvestre F, Crétaux JF, Berge-Nguyen M, et al. Lake Chad hydrological cycle under current climate change. In: Conference. EGU General Assembly; 2021. doi: 10.5194/egusphere-egu21-12738

 

  1. Foster S, Loucks DP. Non-renewable Groundwater Resources: A Guidebook on Socially-Sustainable Management for Water-Policy Makers. Paris, France: UNESCO; 2006. p. 103.

 

  1. Bidarmaghz A, Choudhary R, Narsilio G, Soga K. Impacts of underground climate change on urban geothermal potential: Lessons learnt from a case study in London. Sci Total Environ. 2021;778:146196. doi: 10.1016/j.scitotenv.2021.146196

 

  1. Deubalbe D, Kadjangaba E, Bongo D, et al. Vulnerability evaluation of groundwater of N’Djamena City: Contribution of the parametric methods GOD and SI. J Environ Prot. 2021;12:472-489. doi: 10.4236/jep.2021.127030

 

  1. Kadjangaba E, Huneau F, Travi Y, Djoret D. Recharge and groundwater quality of an alluvial aquifer: Case of the city of N’Djamena (Chad). J Environ Sci Eng B. 2017;6(10):493-505. doi: 10.17265/21625263/2017.10.001

 

  1. Gassina P, Voinsoumna B, Ndoutorlengar M, Idriss MG. Growth of the city of N’Djamena and recurrence of flooding in the 9th district. Int J Innov Sci Res Technol. 2023;8(3):1829-1837. doi: 10.5281/zenodo.7800568.14

 

  1. Yongsi HBN. Suffering for water, suffering from water: Access to drinking-water and associated health risks in Cameroon. J Health Popul Nutr. 2010;28(5):424-435. doi: 10.3329/jhpn.v28i5.6150

 

  1. Ntouda J, Sikodf F, Ibrahim M, Abba I. Access to drinking water and health of populations in Sub-Saharan Africa. C R Biol. 2013;336(5-6):305-309. doi: 10.1016/j.crvi.2013.06.001

 

  1. Moriconi-Ebrard F, Harre D, Heinrigs P. Urbanisation Dynamics in West Africa 1950–2010: Africapolis I, 2015 update. West African Studies. Paris: OECD Publishing; 2016. doi: 10.1787/9789264252233-en

 

  1. Bada AM, Malou R, Kodi MM, Souk AW. Study of the dynamics of Quaternary aquifers by infiltration of rainwater and/or Lake Chad. Am J Water Resour. 2017;5(2):41-53. doi: 10.12691/ajwr-5-2-3

 

  1. Himeda M, Bechir M, Aboubakar, Abakoura B, Tidjani A, Hamadou M. State of fruit and vegetable consumption in N’Djamena, Chad. Eur J Med Plants. 2022;33(9):37-47.doi: 10.9734/EJMP/2022/v33i930489

 

  1. Wada Y, Van Beek LP, Van Kempen C, Reckman JW, Vasak S, Bierkens MF. Global depletion of groundwater resources. Geophys Res Lett. 2010;37(20):L20402. doi: 10.1029/2010GL044571

 

  1. Fuchs E, Carroll KC, King JP. Quantifying groundwater resilience through conjunctive use for irrigated agriculture in a constrained aquifer system. J Hydrol. 2018;565:695-707. doi: 10.1016/j.jhydrol.2018.08.003

 

  1. Isukuru EJ, Opha JO, Isaiah OW, Orovwighose B, Emmanuel SS. Nigeria’s water crisis: Abundant water, polluted reality. Clean Water. 2024;2:100026. doi: 10.1016/j.clwat.2024.100026

 

  1. Dao PU, Heuzard AG, Le LTX, et al. The impacts of climate change on groundwater quality: A review. Sci Total Environ. 2023;912:169241. doi: 10.1016/j.scitotenv.2023.169241

 

  1. Vogt ML, Zwahlen F, Hunkeler D, Brunner P, Pera S, Mahamat H. Infiltration and recharge dynamics in the Nubian Sandstone Aquifer System of northern Chad. Hydrogeol J. 2024;32:1-15. doi: 10.1007/s10040-024-02765-3

 

  1. Zaki SR, Redwan M, Masoud AM, Abdel Moneim AA. Chemical characteristics and assessment of groundwater quality in Halayieb area, southeastern part of the Eastern Desert, Egypt. Geosci J. 2019;23:149-164. doi: 10.1007/s12303-018-0020-5

 

  1. Wang H, Jiao Y, Hu B, Li F, Li D. Study on interaction between surface water and groundwater in typical reach of Xiaoqing River based on WEP-L model. Water. 2023;15:492. doi: 10.3390/w15030492

 

  1. Ngounou Ngatcha B, Mudry JN, Sarrot Reynauld J. Groundwater recharge from rainfall in the southern border of Lake Chad in Cameroon. World Appl Sci J. 2007;2:1-8.

 

  1. Zeydalinejad N, Javadi AA, Webber JL. Global perspectives on groundwater infiltration to sewer networks: A threat to urban sustainability. Water Res. 2024;262:122098. doi: 10.1016/j.watres.2024.122098

 

  1. Zhou J, Wang L, Zhang Y, Guo Y, Li X, Liu W. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling. Water Resour Res. 2015;51:8060-8086. doi: 10.1002/2014WR015846

 

  1. Shrestha S, Pandey V, Shivakoti B, Shashidhar T. Groundwater Environment in Asian Cities: Concepts, Methods and Case Studies. Oxford: Butterworth- Heinemann; 2016. p. 1-515.

 

  1. Leblanc M, Favreau G, Tweed S, Leduc C, Razack M, Mofor L. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Hydrogeol J. 2007;15:97-100. doi: 10.1007/s10040-006-0126-0

 

  1. Bouchez C, Goncalves J, Deschamps P, et al. Hydrological, chemical, and isotopic budgets of Lake Chad: A quantitative assessment of evaporation, transpiration and infiltration fluxes. Hydrol Earth Syst Sci. 2016;20:1599-1619. doi: 10.5194/hess-20-1599-2016

 

  1. Sylvestre F, Mahamat-Nour A, Naradoum T, et al. Strengthening of the hydrological cycle in the Lake Chad Basin under current climate change. Sci Rep. 2024;14(1):24639. doi: 10.1038/s41598-024-75707-4

 

  1. Mfonka Z, Morbe CM, Nsangou D, et al. Groundwater quality assessment for drinking and agricultural purposes under arid climate in N’Djamena, Chad (Central Africa). Int J Energy Water Resour. 2024;9(2):447-470. doi: 10.1007/s42108-024-00297-w

 

  1. Allarané N, Azagoun V, Atchadé A, Hetcheli F, Atela J. Urban vulnerability and adaptation strategies against recurrent climate risks in Central Africa: Evidence from N’Djaména City (Chad). Urban Sci. 2023;7:97. doi: 10.3390/urbansci7030097

 

  1. Loria AFR. The silent impact of underground climate change on civil infrastructure. Commun Eng. 2023;2:1-12. doi: 10.1038/s44172-023-00092-1

 

  1. Gesicki ALD, Sindico F. The environmental dimension of groundwater in Brazil: conflicts between mineral water and water resource management. J Water Resour Prot. 2014;6:1533-1545. doi: 10.4236/jwarp.2014.616140

 

  1. Terefe B, Jembere MM, Assimamaw NT. Access to drinking safe water and its associated factors among households in East Africa: A mixed effect analysis using 12 East African countries recent national health survey. J Health Popul Nutr. 2024;43:1-10. doi: 10.1186/s41043-024-00562-y

 

  1. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 996.

 

  1. Sharma R, Kumar R, Agrawal P, Bhardwaj I, Kaushik C, Gupta G. Groundwater extractions and climate change. In: Singh VP, Yadav S, Yadava RN, editors. Water Conservation in the Era of Global Climate Change. Ch. 2. Netherlands: Elsevier; 2021. p. 23-45. doi: 10.1016/B978-0-12-820200-5.00016-6

 

  1. Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate Data Analysis. 8th ed. United States: Cengage; 2019. p. 813.

 

  1. Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Berlin: Springer; 2009. p. 1-4.doi: 10.1007/978-3-642-00296-0_5

 

  1. Mahamat Nour A, Huneau F, Mahamat Ali A, et al. Shallow Quaternary groundwater in the Lake Chad basin is resilient to climate change but requires sustainable management strategy: Results of isotopic investigation. Sci Total Environ. 2022;851:158152. doi: 10.1016/j.scitotenv.2022.158152

 

  1. Mohammed MAA, Khleel NAA, Szabó N, Szűcs P. Modeling of groundwater quality index by using artificial intelligence algorithms in northern Khartoum State, Sudan. Modeling Earth Syst Environ. 2023;9:2501-2516. doi: 10.1007/s40808-022-01638-6

 

  1. Kazapoe R, Abu M. Predicting irrigation water quality indices in a typical mining dominated area in the Upper West region of Ghana using multiple machine learning techniques. Discover Water. 2024;4:46. doi: 10.1007/s43832-024-00104-x

 

  1. Pourmorad S, Shiri H, Kisi A. Artificial intelligence advancements for accurate groundwater level modelling: An updated synthesis and review. Appl Sci. 2024;14(16):7358. doi: 10.3390/app14167358

 

  1. Paneru B, Paneru B. WaterQualityNeT: Prediction of Seasonal Water Quality of Nepal Using Hybrid Deep Learning Models. Preprint; 2024. doi: 10.48550/arXiv.2409.10898
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing