Tailored Bombax ceiba-based activated carbons for enhanced rhodamine B removal: A sustainable approach to industrial effluent remediation

Bombax ceiba wood waste-derived activated carbon (AC) provides a low-cost, sustainable, and efficient solution for rhodamine B (RhB) dye removal from industrial wastewater through eco-friendly adsorption techniques. This study reports the synthesis of ACs from B. ceiba wood dust using three different chemical activating agents – phosphoric acid, potassium hydroxide, and sodium carbonate – followed by carbonization at an optimized temperature determined through thermogravimetric (TG) analysis and differential scanning calorimetry. The optimal carbonization temperature was identified as 400°C. AC samples were prepared through a one-step chemical impregnation and carbonization process under nitrogen flow. Comprehensive characterization using X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller surface area analysis confirmed the formation of amorphous carbon structures with abundant oxygenated surface functional groups and porous architectures. Among the three samples, phosphoric acid-activated carbon (Bc-H) exhibited the highest surface area (1,451.2 m²/g) and a well-developed micro–mesoporous structure. Batch adsorption experiments showed that Bc-H achieved 99.9% RhB removal under optimized conditions (20 ppm initial dye concentration, pH 8.5, 0.03 g adsorbent, 10 min). Its superior performance is attributed to its large surface area and rich surface functionalities. Notably, Bc-H also outperformed commercial AC under identical conditions, demonstrating faster kinetics and higher removal efficiency. These findings underscore B. ceiba wood dust as a low-cost and sustainable precursor for high-performance AC production. The work contributes to waste biomass valorization and offers a scalable, eco-friendly solution for industrial wastewater treatment, particularly relevant to textile and dyeing effluents in resource-limited settings such as Nepal.

- Shrestha D. Efficiency of wood-dust of Dalbergia sissoo as low-cost adsorbent for rhodamine-B dye removal. Nanomaterials (Basel). 2021a;11(9):2217. doi: 10.3390/nano11092217
- Shrestha D. Removal of eosin Y dye using activated carbons from modified wood dust powder of Dalbergia sissoo. Patan Pragya. 2021b;8(1):57-72. doi: 10.3126/pragya.v8i01.42356
- Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: A review. J Enviorn Chem Engine. 2018;6(4):4676-4697. doi: 10.1016/j.jece.2018.06.060
- Al-Gheethi AA, Azhar QM, Kumar PS, et al. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphe. 2022;287:132080. doi: 10.1016/j.chemosphere.2021.132080
- Shrestha S, Pradhananga D, Pandey V. Kathmandu Valley Groundwater Outlook. Kathmandu, Nepal: Asian Institute of Technology (AIT), The Small Earth Nepal (SEN), Center of Research for Environment Energy and Water (CREEW), International Research Center for River Basin Environment- University of Yamanashi (ICRE-UY); 2012.
- Yadav SN, Rai S, Behera M, et al. Dynamic assembly and stabilization of surfactant-dye-polyelectrolyte complexes: An overview. J Mol Liq. 2025;421:126897. doi: 10.1016/j.molliq.2025.126897
- Rokaya MB, Parajuli B, Timsina B. Vegetation and forest in Nepal. In: Flora and Vegetation of Nepal. Cham: Springer International Publishing, 2024. p. 37-88. doi: 10.1007/978-3-031-50702-1_3
- Saigl ZM. Various adsorbents for removal of rhodamine b dye: A review. Indones J Chem. 2021;21(4):1039-1056. doi: 10.22146/ijc.62863
- Smith RT, Brown LM, Davis PK. Impact of synthetic dyes on aquatic ecosystems. Wat Resear. 2020;185:116250. doi: 10.56557/upjoz/2023/v44i133542
- Ding L, Zou B, Gao W, et al. Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids Surf A Physicochem Eng Asp. 2014;446:1-7. doi: 10.1016/j.colsurfa.2014.01.030
- Li Z, Xu M, Xia Y, et al. High-frequency supercapacitors surpassing dynamic limit of electrical double layer effects. Nat Commun. 2025;16:3704. doi: 10.1038/s41467-025-59015-7
- Dutta S, Gupta B, Srivastava S, Gupta A. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater Advan. 2021;14(2):4497-4531. doi: 10.1039/D1MA00354B
- Mondal S, Purkait MK, De S. Advances in Dye Removal Technologies. Singapore: Springer; 2018. p. 323. doi: 10.1007/978-981-10-6293-3
- Ruan W, Hu J, Qi J, Hou Y, Zhou C, Wei X. Removal of dyes from wastewater by nanomaterials: A review. Adv Mater Lett. 2019;10(1):9-20. doi: 10.5185/amlett.2019.2148
- Dassanayake RS, Acharya S, Abidi N. Recent advances in biopolymer-based dye removal technologies. Molecules. 2021;26(15):4697. doi: 10.3390/molecules26154697
- Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2021;12(1):70-87. doi: 10.1080/21655979.2020.1863034
- Samsami S, Mohamadizaniani M, Sarrafzadeh MH, Rene ER, Firoozbahr M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Proc Safe Environ Protect. 2020;143:138-163. doi: 10.1016/j.psep.2020.05.034
- Cai Z, Sun Y, Liu W, Pan F, Sun P, Fu JM. An overview of nanomaterials applied for removing dyes from wastewater. Environ Sci Pollut Res. 2017;24:15882-15904. doi: 10.1007/s11356-017-9003-8
- Geçgel Ü, Üner O, Gökara G, Bayrak Y. Adsorption of cationic dyes on activated carbon obtained from waste Elaeagnus stone. Adsorpt Sci Technol. 2016;34:512-525. doi: 10.1177/0263617416669727
- Xiao W, Garba Z, Sun S, et al. Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye. J Clean Prod. 2020;253:119989. doi: 10.1016/j.jclepro.2020.119989
- Laasri L, Elamrani MK, Cherkaoui O. Removal of two cationic dyes from a textile effluent by filtration-adsorption on wood sawdust. Environ Sci Pollut Res Int. 2007;14:237-240. doi: 10.1065/espr2006.08.331
- Pourabadeh A, Baharinikoo L, Nouri A, Mehdizadeh B, Shojaei S. The optimisation of operating parameters of dye removal: Application of designs of experiments. Inter J Environ Anal Chem. 2021;101(9):1320-1329. doi: 10.1080/03067319.2019.1680657
- Lacerda VD, López-Sotelo JB, Correa-Guimarães A, et al. Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J Environ Manag. 2015;155:67-76. doi: 10.1016/j.jenvman.2015.03.007
- Inyinbor AA, Adekola FA, Olatunji AG. Adsorption of Rhodamine B dye from aqueous solution on Irvingia gabonensis biomass: Kinetics and thermodynamics studies. S Afr J Chem. 2015;68:115-125. doi: 10.17159/0379-4350/2015/v68a17
- Dahri MK, Kooh MRR, Lim LBL. Remediation of rhodamine B Dye from aqueous solution using Casuarina equisetifolia cone powder as a low-cost adsorbent. Adv Phys Chem. 2016;9497378. doi: 10.1155/2016/9497378
- Lim LBL, Priyantha N, Fang XY, Mohamad Zaidi NAH. Artocarpus odoratissimus peel as a potential adsorbent in environmental remediation to remove toxic Rhodamine B dye. J Mater Environ Sci. 2017;8:494-502.
- Bello OS, Lasisi BM, Adigun OJ, Ephraim V. Scavenging rhodamine B dye using Moringa oleifera seed pod. Chem Speciat Bioavailab. 2017;29:120-134. doi: 10.1080/09542299.2017.1356694
- Rasapoor M, Young B, Asadov A, et al. Effects of biochar and activated carbon on biogas generation: A thermogravimetric and chemical analysis approach. Energy Convers Manag. 2020;203:112221. doi: 10.1016/j.enconman.2019.112221
- Senturk HB, Ozdes D, Duran C. Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunus dulcis) as a low cost biosorbent. Desalination. 2010;252:81-87. doi: 10.1016/j.desal.2009.10.021
- Wang J, Zhou Y, Liu X. Adsorption techniques for dye removal from wastewater: A review. Environ Sci Pollut Res. 2019;26(1):1-15.
- Johnson AB, Lee CD. Toxicity of rhodamine B dye in aquatic environments. Environ Toxico Chem. 2018;37(5):1200-1210.