Submerged hydrophytes as a tool for the removal of heavy metals

Aquatic macrophytes serve as a remarkable biological filter. By absorbing the dissolved metals and pollutants through their tissues, they can efficiently detoxify water streams. The majority of human activities result in the discharge of toxic substances, including heavy metals, as byproducts into water, sediments, and the environment. This study assesses the efficacy of the usage of submerged aquatic macrophytes, such as Ceratophyllum demerssum L. (Family: Ceratophyllaceae) and Potamogeton pectinatus L. (Family: Potamogetonaceae), gathered from El-Burullus Lake, which is located northeast to deltaic vicinity of Egypt, to purify waste-polluted water from heavy metals: cadmium, lead, zinc and manganese. Concentrations of these metals in the wastewater samples were measured by means of atomic absorption spectroscopy. Results showed that C. demerssum has an elimination performance of 63% for heavy metals studied, which was lower than that of P. pectinatus measured at 75%. Therefore, aquatic macrophytes studied are promising candidates for remediating wastewater, comparing extent of eco-toxicity, and preventing pollution occurring in the aquatic environments.
- Nafea EMA. Floating macrophytes efficiency for removing of heavy metals and phenol from wastewaters. Egypt J Aquat Biol Fish. 2019a;23(4):1-9. doi: 10.21608/EJABF.2019.50020
- Aziz KHH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Adv. 2023;13(26):17595-17610. doi: 10.1039/D3RA00723E
- Elshamy MM, Heikal YM, Bonanomi G. Phytoremediation efficiency of Portulaca oleracea L. naturally growing in some industrial sites, Dakahlia district, Egypt. Chemosphere. 2019;225:678-687. doi: 10.1016/j.chemosphere.2019.03.099
- Rizwan M, El-Shamy M, Abdel-Aziz HMM. Assessment of trace element and macronutrient accumulation capacity of two native plant species in three different Egyptian mine areas for remediation of contaminated soils. Ecol Indic. 2019;106:105463. doi: 10.1016/j.ecolind.2019.105463
- Nafea EMA. Ecological performance of Ludwigia stolonifera (Guill. & Perr.) P.H. Raven under different pollution loads. Egypt J Aquat Biol Fish. 2019b;23(4):39-50. doi: 10.21608/EJABF.2019.50015
- Jadia CD, Fulekar MH. Phytoremediation of heavy metals: Recent techniques. Afr J Biotechnol. 2009;8:921-928.
- Saravanan P, Pakshirajan K, Saha P. Kinetics of phenol and m-cresol biodegradation by an indigenous mixed microbial culture isolated from a sewage treatment plant. J Environ Sci (China). 2008;20:1508-1513. doi: 10.1016/S1001-0742(08)62557-7
- Nafea EMA, Šera B. Bioremoval of heavy metals from polluted soil by Schoenoplectus litoralis (Schrad.) Palla and Cyperus rotundus L. (Cyperaceae). Egypt J Aquat Biol Fish. 2020;24(5):217-226. doi: 10.21608/EJABF.2020.104704
- Dimassi SN, Hahladakis JN, Yahia MND, Ahmad MI, Sayadi S, Al-Ghouti MA. Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. Arab J Chem. 2022;15(11):104262. doi: 10.1016/j.arabjc.2022.104262
- Meagher RB. Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol. 2000;3:153-162. doi: 10.1016/s1369-5266(99)00054-0
- LeDuc D, Terry N. Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol. 2005;32:514-520. doi: 10.1007/s10295-005-0227-0
- Nafea EMA. Monitoring of some heavy metals in the water and three submerged plants of the southern part of lake Manzala. J Aquat Sci Fish Resour. 2020;1:7-10. doi: 10.21608/asfr.2020.43080.1008
- Ruey SJ, Wen CH, Ya HH. Treatment of phenol in synthetic saline wastewater by solvent extraction and two-phase membrane biodegradation. J Hazard Mater. 2009;164(1):46-52. doi: 10.1016/j.jhazmat.2008.07.116
- FAO Food and Agriculture Organization. 3-Floating Aquatic Macrophytes-Duckweeds. United Nations: FAO Food and Agriculture Organization; 2010. p. 29.
- Sago Pondweed (Stuckenia pectinata). Available from: https://www.illinoiswildflowers.info [Last accessed on 2023 Jun 17].
- Van Wijk RJ. Ecological studies on Potamogeton pectinatus L. I. General characteristics, biomass production and life cycles under field conditions. Aquat Bot. 1988;31(3-4):211-258. doi: 10.1016/0304-3770(88)90015-0
- Nafea EMA. Characterization of environmental conditions required for production of livestock and fish fodder from duckweed (Lemna gibba L.). J Mediterr Ecol. 2016;14:5-11.
- Syed I, Fatima H, Mohammed A, Siddiqui MA. Ceratophyllum demersum a free-floating aquatic plant: A review. Indian J Pharm Biol Res. 2018;6(2):10-17. doi: 10.30750/ijpbr.6.2.3
- Chen H, Pan SS. Bioremediation potential of spirulina: Toxicity and biosorption studies of lead. J Zhejiang Univ SCI Biol. 2005;6B(3):171-174. doi: 10.1631/jzus.2005.B0171
- Salama ES, Hyun SR, Dev S, et al. Algae as a green technology for heavy metals removal from various wastewater. World J Microbiol Biotechnol. 2019;35:75. doi: 10.1007/s11274-019-2648-3
- Mofeed J. Biosorption of heavy metals from aqueous industrial effluent by non-living biomass of two marine green algae Ulva lactuca and Dunaliella salina as biosorpents. Egypt Soc Environ Sci. 2017;16(1):43-52. doi: 10.21608/cat.2017.14267
- Abdel-Aal EI, Mofeed J. Mass production of Arthrospira platensis on the livestock manure for use as a protein source in animal feed. Egypt J Aquat Biol Fish. 2020;24(7):725-739. doi: 10.21608/ejabf.2020.127643
- Hak K, Ritchie RJ, Dummee V. Bioaccumulation and physiological responses of the Coontail, Ceratophyllum demersum exposed to copper, zinc and in combination. Ecotoxicol Environ Saf. 2020;189:110049. doi: 10.1016/j.ecoenv.2019.110049
- Alhaithloul HAS, Soliman KG, Ibrahim AH, et al. Evaluation of the water quality index of some drains linked to the bahr el-baqar drain and study of heavy metals in vegetables grown around them and their potential risks to the health. Water Air Soil Pollut. 2025;236:539. doi: 10.1007/s11270-025-08110-y
- Allen SE, Grimshaw HM, Parkinson JA, Quamby C, Roberts JD. In: Moore PD, Chapman SB, editors. Methods in Plant Ecology. 2nd ed. Oxford: Black well Scientific Publications; 1986. p. 411-466.
- Allen SE. Chemical Analysis of Ecological Materials. London: Black Well Scientific Publications; 1989.
- Boulos L. Flora of Egypt. Vol. 1-4. Cairo, Egypt: Al Hadara Publishing; 1999.
- SPSS Inc. SPSS10.0 for Windows: Statistics. Chicago, IL: SPSS Inc.; 1999.
- Justin LD, Olukanni DO, Babaremu KO. Performance assessment of local aquatic macrophytes for domestic wastewater treatment in Nigerian communities: A review. Heliyon. 2022;8(8):e10093. doi: 10.1016/j.heliyon.2022.e10093
- Chen M, Zhang LL, Li J, He XJ, Cai JC. Bioaccumulation and tolerance characteristics of a submerged plant (Ceratophyllum demerssum L.) Exposed to toxic metal lead. Ecotoxicol Environ Saf. 2015;122:313-321. doi: 10.1016/j.ecoenv.2015.08.007
- Pilon-Smits E. Phytoremediation. Annu Rev Plant Biol. 2005;56:15-39. doi: 10.1146/annurev.arplant.56.032604.144214
- Daud MK, Ali S, Abbas Z, et al. Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. J Chem. 2018;2018:3951540. doi: 10.1155/2018/3951540
- Mosleh Y, Nafea E, Heham S, Mofeed J. Heavy metals removal from industrial wastewater using dry green macro alga Ulva lactuca Linnaeus. Egypt J Aquat Biol Fish. 2023;27(2):343-360. doi: 10.21608/ejabf.2023.292265
- Amin MT, Alazba AA, Manzoor U. Review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. 2014;2:24. doi: 10.1155/2014/825910
- Patel DK, Kanungo VK. Phytoremediation potential of duckweed (Lemna minor L: A tiny aquatic plant) in the removal of pollutants from domestic wastewater with special reference to nutrients. Int Q J Life Sci. 2010;5(3):355-358.
- Younis AM, Nafea EM, Mosleh YYI, Hefnawy MS. Low cost biosorbent (Lemna gibba L.) for the removal of phenol from aqueous media. J Mediterr Ecol. 2016;14:55-62.
- Khandare RV, Govindwar SP. Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotechnol Adv. 2015;33(8):1697-1714. doi: 10.1016/j.biotechadv.2015.09.003
- Wickramasinghe S, Jayawardana CK. Potential of aquatic macrophytes Eichhornia crassipes, Pistia stratiotes, in treatment of textile wastewater. J Water Secur. 2018;4:2018.001. doi: 10.15544/jws.2018.001
- Ugya AY, Imam TS, Tahir SM. The role of phytoremediation in remediation of industrial wastes. World J Pharm Res. 2016;5(12):1403-1430. doi: 10.20959/wjpr201612-7544
- Rezania S, Mat Taib S, Md Din MF, Dahalan FA, Hesam Kamyab H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater. 2016;318:587-599. doi: 10.1016/j.jhazmat.2016.07.053
- Vijayaraghavan K, Balasubramanian R. Is biosorption suitable for decontamination of metal-bearing wastewater? A critical review on the state-of-the-art biosorption processes and future directions. J Environ Manage. 2015;160:283-296. doi: 10.1016/j.jenvman.2015.06.030
- Sharma S, Singh B, Manchanda VK. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res Int. 2015;22:946-962. doi: 10.1007/s11356-014-3635-8
- Bhatia M, Goyal D. Analyzing remediation potential of wastewater through wetland plants: A review. Environ Prog Sustain Energy. 2014;33:9-27. doi: 10.1002/ep.11822
- Bauddh K, Singh K, Singh B, Singh RP. Ricinus communis: A robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil. Ecol Eng. 2015;84:640-652. doi: 10.1016/j.ecoleng.2015.09.038