AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025200158
REVIEW ARTICLE

Redefining plastic terminology: The urgent need for standardised definitions in science and policy

Austine Ofondu Chinomso Iroegbu1* Moipone Linda Teffo1 Emmanuel Rotimi Sadiku1
Show Less
1 Department of Chemical, Metallurgical and Materials Engineering, Institute for Nano-Engineering Research, Tshwane University of Technology, Pretoria, Gauteng, South Africa
Received: 17 May 2025 | Revised: 27 May 2025 | Accepted: 28 May 2025 | Published online: 20 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Plastic pollution is a pervasive global threat, yet efforts to mitigate it are hindered by inconsistent terminology across scientific, industrial, and policy domains. Key terms, such as “polymer,” “plastic,” and “macromolecule” are often used interchangeably despite distinct meanings. This semantic confusion undermines research integrity, muddles regulatory frameworks, and impedes effective environmental management. Without universally accepted definitions or a clear classification system, data comparability, policy implementation, and interdisciplinary collaboration are significantly compromised. This study systematically examines the scope and impact of terminological inconsistencies in plastics discourse. We conducted a structured review of recent (2020 – 2025) peer-reviewed literature spanning polymer science and environmental policy to assess how definitional ambiguity affects research outcomes and decision-making. The findings reveal that ambiguous usage of fundamental terms has led to misinterpretations in scientific studies, inconsistent policy decisions, and fragmented mitigation strategies. In response, we propose a standardization framework guided by the International Union of Pure and Applied Chemistry principles, delineating clear criteria to distinguish polymers, plastics, and macromolecules. We recommend embedding these standardized definitions across academic publications, industry standards, and environmental policies to improve communication, ensure regulatory clarity, and support sustainable management practices. By establishing a coherent global terminology for plastics, this work underscores an urgent call for collective action. Standardizing the language of plastics will not only enhance data comparability and strengthen international policy initiatives, but also ensure that scientists, policymakers, and industry leaders can collaboratively craft effective, evidence-based solutions to plastic pollution.

Keywords
Plastics; Polymers
Environmental policy
Terminology standardization
Sustainability
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Holdgate MW. A Perspective of Environmental Pollution. 1st ed. Cambridge: University Press; 1979.

 

  1. Iroegbu AOC, Sadiku RE, Ray SS, Hamam Y. Plastics in municipal drinking water and wastewater treatment plant effluents: Challenges and opportunities for South Africa-a review. Environ Sci Pollut Res. 2020;27(12):12953-12966. doi: 10.1007/s11356-020-08194-5

 

  1. Iroegbu AOC, Ray SS, Mbarane V, Bordado JC, Sardinha JP. Plastic pollution: A perspective on matters arising: Challenges and opportunities. ACS Omega. 2021;6(30):19343-19355. doi: 10.1021/acsomega.1c02760

 

  1. Hartmann NB, Hüffer T, Thompson RC, et al. Are we speaking the same language? recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol. 2019;53(3):1039-1047. doi: 10.1021/acs.est.8b05297

 

  1. Billmeyer FW. Textbook of Polymer Science. 3rd ed. Germany: Wiley-VCH; 1962.

 

  1. IUPAC. Polymer. In: The IUPAC Compendium of Chemical Terminology. United States: International Union of Pure and Applied Chemistry (IUPAC); 2014. doi: 10.1351/goldbook.P04735

 

  1. IUPAC. Macromolecule (polymer molecule). In: The IUPAC Compendium of Chemical Terminology. United States: International Union of Pure and Applied Chemistry (IUPAC); 2014. doi: 10.1351/goldbook.M03667

 

  1. Wright SL, Kelly FJ. Plastic and human health: A micro issue? Environ Sci Technol. 2017;51(12):6634-6647. doi: 10.1021/acs.est.7b00423

 

  1. Ogden CK, Richards IA. The Meaning of Meaning - A Study of the Influence of Language Upon Thought And of the Science of Symbolism. 1st ed. California: A Harvest Book, Harcourt, Brace and World, Inc.; 1923.

 

  1. Rothman R, Ryan AJ. The history and future of plastics. In: Alice A. Horthon, editors. Plastic Pollution in the Global Ocean. Vol 1. Singapore: World Scientific; 2023. p. 21-46. doi: 10.1142/9789811259111_0002

 

  1. De Falco F, Di Pace E, Avella M, Cocca M. Impact of plastics on marine environments: From macro- to microplastic pollution. In: Sustainability of Polymeric Materials. Berlin: De Gruyter; 2020. p. 23-38. doi: 10.1515/9783110590586-002

 

  1. Hoff GP. Nylon as a textile fiber. Ind Eng Chem. 1940;32(12):1560-1564.

 

  1. Carpenter EJ, Anderson SJ, Harvey GR, Miklas HP, Peck BB. Polystyrene spherules in coastal waters. Science. 1972;178(4062):749-750. doi: 10.1126/science.178.4062.749

 

  1. Carpenter EJ, Smith KL Jr. Plastics on the sargasso sea surface. Science. 1972;175(4027):1240-1241. doi: 10.1126/science.175.4027.1240

 

  1. National Academy of Sciences. Assessing Potential Ocean Pollutants. United States: US National Academy of Sciences; 1975.

 

  1. Nakashima E, Isobe A, Kako S, Itai T, Takahashi S, Guo X. The potential of oceanic transport and onshore leaching of additive-derived lead by marine macro-plastic debris. Mar Pollut Bull. 2016;107(1):333-339. doi: 10.1016/j.marpolbul.2016.03.038

 

  1. Reynolds C, Ryan PG. Micro-plastic ingestion by waterbirds from contaminated wetlands in South Africa. Mar Pollut Bull. 2018;126:330-333. doi: 10.1016/j.marpolbul.2017.11.021

 

  1. Beaumont NJ, Aanesen M, Austen MC, et al. Global ecological, social and economic impacts of marine plastic. Mar Pollut Bull. 2019;142:189-195. doi: 10.1016/j.marpolbul.2019.03.022

 

  1. Briassoulis D. Agricultural plastics as a potential threat to food security, health, and environment through soil pollution by microplastics: Problem definition. Sci Total Environ. 2023;892:164533. doi: 10.1016/j.scitotenv.2023.164533

 

  1. Rothstein SI. Plastic particle pollution of the surface of the atlantic ocean: Evidence from a Seabird. Condor. 1973;75(3):344-345. doi: 10.2307/1366176

 

  1. Charles E, Carraher JR. Carraher’s Polymer Chemistry. 10th ed. Francis: Taylor and Francis Group, LLC; 2018.

 

  1. Charles E, Carraher JR. Giant Molecules: Essential Materials for Everyday Living and Problem Solving. 2nd ed. Hoboken, New Jersey: John Wiley and Sons, Inc.; 2003.

 

  1. Alexander Y, Grosberg A, Khokhlov AR. Giant Molecules: Here, There, and Everywhere. 2nd ed. Singapore: World Scientific Publishing Co. Pvt Ltd.; 2011.

 

  1. Fan LZ, He H, Nan CW. Tailoring inorganic-polymer composites for the mass production of solid-State batteries. Nat Rev Mater. 2021;6(11):1003-1019.doi: 10.1038/s41578-021-00320-0

 

  1. Valino AD, Dizon JRC, Espera AH, Chen Q, Messman J, Advincula RC. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci. 2019;98:101162. doi: 10.1016/J.PROGPOLYMSCI.2019.101162

 

  1. Zhao HY, Yu MY, Liu J, Li X, Min P, Yu ZZ. Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nanomicro Lett. 2022;14(1):129. doi: 10.1007/S40820-022-00878-6

 

  1. Wang S, Luo Z, Liang J, et al. Polymer nanocomposite dielectrics: Understanding the matrix/particle interface. ACS Nano. 2022;16(9):13612-13656. doi: 10.1021/ACSNANO.2C07404

 

  1. Dong J, Hu R, Niu Y, et al. Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region. Nano Energy. 2022;99:107314. doi: 10.1016/J.NANOEN.2022.107314

 

  1. Koltzenburg S, Maskos M, Nuyken O. Polymer Chemistry. Berlin, Germany: Springer Berlin Heidelberg; 2023. p. 14197.

 

  1. Zhu J, Wang C. Biodegradable plastics: Green hope or greenwashing? Mar Pollut Bull. 2020;161:111774. doi: 10.1016/j.marpolbul.2020.111774

 

  1. Millican JM, Agarwal S. Plastic pollution: A material problem? Macromolecules. 2021;54(10):4455-4469. doi: 10.1021/acs.macromol.0c02814

 

  1. Law KL, Narayan R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat Rev Mater. 2021;7(2):104-116. doi: 10.1038/s41578-021-00382-0

 

  1. Figge F, Thorpe AS, Gutberlet M. Definitions of the circular economy: Circularity matters. Ecol Econ. 2023;208:107823. doi: 10.1016/j.ecolecon.2023.107823

 

  1. Yu J, Yu DW, Checkla DM, Freedberg IM, Bertolino AP. Human hair keratins. J Invest Dermatol. 1993;101(1):S56-S59. doi: 10.1016/0022-202X(93)90501-8

 

  1. Branden C, Tooze J. Introduction to Protein Structure. 2nd ed. NY, USA: Garland Science, Taylor and Francis Group, LLC; 1999.

 

  1. Ward WS. Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa. Biol Reprod. 1993;48(6):1193-1201. doi: 10.1095/biolreprod48.6.1193

 

  1. Saenger W. Principles of Nucleic Acid Structure. New York: Springer; 1984. doi: 10.1007/978-1-4612-5190-3

 

  1. Riseman J, Kirkwood JG. The intrinsic viscosity, translational and rotatory diffusion constants of rod-like macromolecules in solution. J Chem Phys. 1950;18(4):512-516. doi: 10.1063/1.1747672

 

  1. Khanna YP, Reimschuessel AC, Banerjie A, Altman C. Memory effects in polymers. II. Processing history vs. Crystallization rate of nylon 6-observation of phenomenon and product behavior. Polym Eng Sci. 1988;28(24):1600-1606. doi: 10.1002/pen.760282405

 

  1. Graessley WW. Entangled linear, branched and network polymer systems - molecular theories. In: Synthesis and Degradation Rheology and Extrusion. Vol 47. Germany: Springer-Verlag; 1982. p. 67-117. doi: 10.1007/BFb0038532

 

  1. Kohlgrüber K, Bierdel M, Rust H. Plastics Compounding and Polymer Processing - Fundamentals, Machines, Equipment, Application Technology. Germany: Carl Hanser Verlag, München; 2021.

 

  1. Reiter G. The memorizing capacity of polymers. J Chem Phys. 2020;152(15):150901. doi: 10.1063/1.5139621

 

  1. Tadmor Z, Gogos CG. Principles of Polymer Processing. 2nd ed. Hoboken, NJ, USA: John Wiley and Sons, Inc.; 2006.

 

  1. Saldívar-Guerra E, Vivaldo-Lima E, editors. Handbook of Polymer Synthesis, Characterization, and Processing. United States: Wiley; 2013. doi: 10.1002/9781118480793

 

  1. Desidery L, Lanotte M. Polymers and plastics: Types, properties, and manufacturing. In: Plastic Waste for Sustainable Asphalt Roads. Amsterdam: Elsevier; 2022. p. 3-28. doi: 10.1016/B978-0-323-85789-5.00001-0

 

  1. Seiffert S. Physical Chemistry of Polymers - A Conceptual Introduction. Berlin, Germany: Walter De Gruyter GmbH; 2020.

 

  1. Akiba M, Hashim AS. Vulcanization and crosslinking in elastomers. Prog Polym Sci. 1997;22(3):475-521. doi: 10.1016/S0079-6700(96)00015-9

 

  1. Rajesh Babu R, Shibulal GS, Chandra AK, Naskar K. Compounding and vulcanization. In: Visakh P, Thomas S, Chandra A, Mathew A, editors. Advances in Elastomers I: Advanced Structured Materials. Vol 11. Berlin: Springer Nature; 2013. p. 83-135. doi: 10.1007/978-3-642-20925-3_4

 

  1. Ge C, Wang S, Zheng W, Zhai W. Preparation of microcellular thermoplastic polyurethane (TPU) foam and its tensile property. Polym Eng Sci. 2018;58:E158-E166. doi: 10.1002/PEN.24813

 

  1. Datta J, Kasprzyk P. Thermoplastic polyurethanes derived from petrochemical or renewable resources: A comprehensive review. Polym Eng Sci. 2018;58:E14-E35. doi: 10.1002/PEN.24633

 

  1. Johnson L, Samms J. Thermoplastic polyurethane technologies for the textile industry. J Coated Fabr. 1997;27(1):48-62.doi: 10.1177/152808379702700106

 

  1. Dodiuk H, editor. Handbook of Thermoset Plastics. 4th ed. Amsterdam: William Andrew - Elsevier; 2022.

 

  1. Tamburri MN, Soon ZY, Scianni C, et al. Understanding the potential release of microplastics from coatings used on commercial ships. Front Mar Sci. 2022;9:1074654. doi: 10.3389/fmars.2022.1074654

 

  1. Iroegbu AOC, Ray SS. Bamboos: From bioresource to sustainable materials and chemicals. Sustain (Switzerland). 2021;13(21):12200. doi: 10.3390/su132112200

 

  1. Wilderjans E, Luyts A, Brijs K, Delcour JA. Ingredient functionality in batter type cake making. Trends Food Sci Technol. 2013;30(1):6-15. doi: 10.1016/j.tifs.2013.01.001

 

  1. Bennion EB, Bamford GST. In: Bent AJ, editor. The Technology of Cake Making. Germany, US: Springer; 1997. doi: 10.1007/978-1-4757-6690-5

 

  1. Matthews FL, Rawlings RD. Composite Materials: Engineering and Science. Delhi: WoodHead Publishing; 1999.

 

  1. Brendan R. Tire Engineering - An Introduction. 1st ed. United States: CRC Press; 2021.

 

  1. Grossman RF, Lutz JT Jr., editors. Polymer Modifiers and Additives. United States: CRC Press; 2000. doi: 10.1201/9781482273755

 

  1. Mascia L, Xanthos M. An overview of additives and modifiers for polymer blends: Facts, deductions, and uncertainties. Adv Polym Technol. 1992;11(4):237-248. doi: 10.1002/adv.1992.060110402

 

  1. Iroegbu AOC, Ray SS. Recent developments and future perspectives of biorenewable nanocomposites for advanced applications. Nanotechnol Rev. 2022;11(1):1696-1721. doi: 10.1515/ntrev-2022-0105

 

  1. Evans MS. Tyre Compounding for Improved Performance. United Kingdom: ISmithers Rapra Publishing; 2001.

 

  1. Bart JCJ. Polymer additive analysis at the limits. Polym Degrad Stab. 2003;82(2):197-205. doi: 10.1016/S0141-3910(03)00196-4

 

  1. Chanda M, Roy SK. Plastics Technology Handbook, Third Edition. 4th ed. United States: CRC Press; 2006. doi: 10.1201/9781420006360

 

  1. Science Museum. The Age of Plastic: From Parkesine to Pollution. Science Museum; 2019. Available from: https://www.sciencemuseum.org.uk/objects/and/stories/ chemistry/age/plastic/parkesine-pollution [Last accessed on 2023 Nov 17].

 

  1. Azzarello MY, Van-Vleet E. Marine birds and plastic pollution. Mar Ecol Prog Ser. 1987;37:295-303. doi: 10.3354/meps037295

 

  1. MacLeod M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373(6550):61-65. doi: 10.1126/science.abg5433

 

  1. Windsor FM, Durance I, Horton AA, Thompson RC, Tyler CR, Ormerod SJ. A catchment‐scale perspective of plastic pollution. Glob Chang Biol. 2019;25(4):1207-1221. doi: 10.1111/gcb.14572

 

  1. Han WB, Lee JH, Shin JW, Hwang SW. Advanced materials and systems for biodegradable, transient electronics. Adv Mater. 2020;32(51):2002211. doi: 10.1002/adma.202002211

 

  1. Rujnić-Sokele M, Pilipović A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag Res. 2017;35(2):132-140. doi: 10.1177/0734242X16683272

 

  1. Greenpeace Africa. Greenpeace Africa commends Uganda for the Ban on Plastic Bags. GreenPeace; 2018. Available from: https://www.greenpeace.org/ archive-africa/en/press-centre-hub/greenpeace-africa-commends-uganda-for-the-ban-on-plastic-bags [Last accessed on 2018 Nov 19].

 

  1. Cornejo-D’Ottone M, Molina V, Pavez J, Silva N. Greenhouse gas cycling by the plastisphere: The sleeper issue of plastic pollution. Chemosphere. 2020;246:125709. doi: 10.1016/j.chemosphere.2019.125709

 

  1. Shen M, Huang W, Chen M, Song B, Zeng G, Zhang Y. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J Clean Prod. 2020;254:120138. doi: 10.1016/j.jclepro.2020.120138

 

  1. Moustafa H, Youssef AM, Darwish NA, Abou-Kandil AI. Eco-friendly polymer composites for green packaging: Future vision and challenges. Compos Part B Eng. 2019;172:16-25. doi: 10.1016/j.compositesb.2019.05.048

 

  1. Circle Economy. The Circularity Gap Report 2021. World Economic Forum; 2021. Available from: https:// www.circularity-gap.world/2022#download-the-report [Last accessed on 2022 Mar 08].

 

  1. O’Brien S, Okoffo ED, O’Brien JW, et al. Airborne emissions of microplastic fibres from domestic laundry dryers. Sci Total Environ. 2020;747:141175. doi: 10.1016/j.scitotenv.2020.141175

 

  1. Hernandez E, Nowack B, Mitrano DM. Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environ Sci Technol. 2017;51(12):7036-7046. doi: 10.1021/acs.est.7b01750

 

  1. The Guardian News and Media. ‘It’s the Industry’s Dirty Secret’: Why Fashion’s Oversupply Problem is an Environmental Disaster. Fashion Industry. Available from: https://www.theguardian.com/fashion/2024/ jan/18/its/the/industrys/dirty/secret/why/fashions-oversupply-problem-is-an-environmental-disaster [Last accessed on 2024 Apr 06].

 

  1. Gündoğdu S, editor. Plastic Waste Trade. Switzerland: Springer Nature; 2024. doi: 10.1007/978-3-031-51358-9

 

  1. Green DS, Almroth BC, Altman R, et al. Time to kick the butt of the most common litter item in the world: Ban cigarette filters. Sci Total Environ. 2023;865:161256. doi: 10.1016/j.scitotenv.2022.161256

 

  1. Belzagui F, Buscio V, Gutiérrez-Bouzán C, Vilaseca M. Cigarette butts as a microfiber source with a microplastic level of concern. Sci Total Environ. 2021;762:144165. doi: 10.1016/j.scitotenv.2020.144165

 

  1. Novotny TE, Lum K, Smith E, Wang V, Barnes R. Cigarettes butts and the case for an environmental policy on hazardous cigarette waste. Int J Environ Res Public Health. 2009;6(5):1691-1705. doi: 10.3390/ijerph6051691

 

  1. Stanton T, Johnson M, Nathanail P, MacNaughtan W, Gomes RL. Freshwater and airborne textile fibre populations are dominated by ‘natural’, not microplastic, fibres. Sci Total Environ. 2019;666:377-389. doi: 10.1016/j.scitotenv.2019.02.278

 

  1. Sillanpää M, Sainio P. Release of polyester and cotton fibers from textiles in machine washings. Environ Sci Pollut Res Int. 2017;24(23):19313-19321. doi: 10.1007/s11356-017-9621-1

 

  1. Luo Z, Zhou X, Su Y, et al. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Sci Total Environ. 2021;795:148902. doi: 10.1016/j.scitotenv.2021.148902

 

  1. Rauert C, Vardy S, Daniell B, Charlton N, Thomas KV. Tyre additive chemicals, tyre road wear particles and high production polymers in surface water at 5 urban centres in Queensland, Australia. Sci Total Environ. 2022;852:158468. doi: 10.1016/j.scitotenv.2022.158468

 

  1. Goßmann I, Herzke D, Held A, et al. Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air. Nat Commun. 2023;14(1):3707. doi: 10.1038/s41467-023-39340-5

 

  1. Malizia A, Monmany-Garzia AC. Terrestrial ecologists should stop ignoring plastic pollution in the anthropocene time. Sci Total Environ. 2019;668:1025-1029. doi: 10.1016/j.scitotenv.2019.03.044

 

  1. De Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol. 2018;24(4): 1405-1416. doi: 10.1111/gcb.14020

 

  1. Kole PJ, Löhr AJ, Van Belleghem FG, Ragas AM. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int J Environ Res Public Health. 2017;14(10):1265. doi: 10.3390/ijerph14101265

 

  1. Knight LJ, Parker-Jurd FNF, Al-Sid-Cheikh M, Thompson RC. Tyre wear particles: An abundant yet widely unreported microplastic? Environ Sci Pollut Res. 2020;27(15):18345-18354. doi: 10.1007/s11356-020-08187-4

 

  1. Andersson-Sköld Y, Johanesson M, Gustafsson M, et al. Microplastics from Tyre and Road Wear - A Literature Review. Swedish National Road and Transport Research Institute; 2020. Available from: https://www.vti.se [Last accessed on 2021 Mar 23].

 

  1. Iroegbu AO, Ray SS. Lignin and keratin-based materials in transient devices and disposables: Recent advances toward materials and environmental sustainability. ACS Omega. 2022;7(13):10854-10863. doi: 10.1021/acsomega.1c07372

 

  1. Iroegbu AOC, Ray SS. Nanocellulosics in transient technology. ACS Omega. 2022;7(51):47547-47566. doi: 10.1021/acsomega.2c05848

 

  1. Chandrasekaran SR, Avasarala S, Murali D, Rajagopalan N, Sharma BK. Materials and energy recovery from e-waste plastics. ACS Sustain Chem Eng. 2018;6(4):4594-4602. doi: 10.1021/acssuschemeng.7b03282

 

  1. Tian Y, Chen C, Sagoe-Crentsil K, Zhang J, Duan W. Intelligent robotic systems for structural health monitoring: Applications and future trends. Autom Constr. 2022;139:104273. doi: 10.1016/j.autcon.2022.104273

 

  1. Onat NC, Kucukvar M. A systematic review on sustainability assessment of electric vehicles: Knowledge gaps and future perspectives. Environ Impact Assess Rev. 2022;97:106867. doi: 10.1016/j.eiar.2022.106867

 

  1. Daniela-Abigail HL, Tariq R, El Mekaoui A, et al. Does recycling solar panels make this renewable resource sustainable? Evidence supported by environmental, economic, and social dimensions. Sustain Cities Soc. 2022;77:103539. doi: 10.1016/j.scs.2021.103539

 

  1. Sodhi M, Banaszek L, Magee C, Rivero-Hudec M. Economic lifetimes of solar panels. Procedia CIRP. 2022;105:782-787. doi: 10.1016/j.procir.2022.02.130

 

  1. Ghosh K, Jones BH. Roadmap to biodegradable plastics-current State and research needs. ACS Sustain Chem Eng. 2021;9(18):6170-6187. doi: 10.1021/acssuschemeng.1c00801

 

  1. Innocenti FD. Biodegradability and compostability. In: Chiellini E, Solaro R, editors. Biodegradable Polymers and Plastics. 1st ed., Vol. 1. United States: Springer; 2003. p. 33-45. doi: 10.1007/978-1-4419-9240-6_2

 

  1. Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017;59:526-536. doi: 10.1016/j.wasman.2016.10.006

 

  1. Chinaglia S, Tosin M, Degli-Innocenti F. Biodegradation rate of biodegradable plastics at molecular level. Polym Degrad Stab. 2018;147:237-244. doi: 10.1016/j.polymdegradstab.2017.12.011

 

  1. Jeon O, Bouhadir KH, Mansour JM, Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials. 2009;30(14):2724-2734. doi: 10.1016/j.biomaterials.2009.01.034

 

  1. Li R, Tao J, Huang D, et al. Investigating the effects of biodegradable microplastics and copper ions on probiotic (Bacillus amyloliquefaciens): Toxicity and application. J Hazard Mater. 2023;443:130081. doi: 10.1016/j.jhazmat.2022.130081

 

  1. Ali W, Ali H, Gillani S, Zinck P, Souissi S. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: A review. Environ Chem Lett. 2023;21(3):1761-1786. doi: 10.1007/s10311-023-01564-8

 

  1. Gerngross TU, Slater SC. How green are green plastics? Sci Am. 2000;283(2):36-41. doi: 10.1038/scientificamerican0800-36

 

  1. Gulizia AM, Patel K, Philippa B, Motti CA, Van Herwerden L, Vamvounis G. Understanding plasticiser leaching from polystyrene microplastics. Sci Total Environ. 2023;857:159099. doi: 10.1016/j.scitotenv.2022.159099

 

  1. Albertsson AC, Hakkarainen M. Designed to degrade. Science. 2017;358(6365):872-873. doi: 10.1126/science.aap8115

 

  1. Sun B, Hu Y, Cheng H, Tao S. Releases of brominated flame retardants (BFRs) from microplastics in aqueous medium: Kinetics and molecular-size dependence of diffusion. Water Res. 2019;151:215-225. doi: 10.1016/j.watres.2018.12.017

 

  1. Bandow N, Will V, Wachtendorf V, Simon FG. Contaminant release from aged microplastic. Environ Chem. 2017;14(6):394. doi: 10.1071/EN17064

 

  1. Environment ECDG for. Turning the Tide on Single-Use Plastics. European: Publications Office of the European Union; 2021. doi: 10.2779/800074

 

  1. US-EPA. Frequently Asked Questions about Plastic Recycling and Composting. National Strategy; 2024. Available from: https://www.epa.gov/trash/free/waters/ frequently/asked/questions/about/plastic/recycling/ and/composting#biodegradable [Last accessed on 2025 Feb 03].
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing