AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025130096
ORIGINAL RESEARCH ARTICLE

Digital and precision farming, emissions trade-offs, and food crop yields in Pakistan

Agha Amad Nabi1 Muhammad Khalid Anser2,3 Muhammad Asif4 Khalid Zaman5*
Show Less
1 Department of Business Administration, Faculty of Social Sciences, Government College University, Hyderabad, Sindh, Pakistan
2 Department of Economics, Faculty of Economics and Administrative Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
3 School of Business, Faculty of Social Sciences, Xi’an International University, Xi’an, Shaanxi, China
4 Department of Business Administration, Faculty of Social Sciences, Air University, Multan Campus, Pakistan
5 Department of Economics, Faculty of Social and Administrative Sciences, The University of Haripur, Haripur, Pakistan
Received: 30 March 2025 | Revised: 18 May 2025 | Accepted: 19 May 2025 | Published online: 29 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Climate change, low productivity, and environmental degradation are jeopardizing Pakistan’s agricultural sector, whose sustainability and resilience can be potentially improved using agricultural technology (AgriTech). This study examines the relationship between digital technology, precision farming, methane (CH4) and nitrous oxide (N2O) emissions, and Pakistan’s grain crop yields to determine how modern technology impacts ecologically responsible farming. The study used Autoregressive Distributed Lag bounds testing to explore how data analytics, modern farming technologies, and agricultural value-added (AGRI) affect grain crop yields in the short and long run. Long- and short-term crop yields were reduced by AGRI. Data analytics could only produce short-term advantages, but precision agriculture tools and digital technologies assisted in enhancing yields significantly. CH4 and N2O emissions were significantly associated with yield growth, suggesting efficiency trade-offs. This study found that digital technology is an intensive farming method, resulting in higher yields linked to higher input consumption and emissions. The technology also enabled precision agriculture to increase productivity with lower environmental impacts. Taken together, the findings of the current study collectively underline the need to merge smart farming technologies with environmentally friendly methods to boost Pakistan’s agricultural productivity and sustainability.

Keywords
AgriTech
Precision farming
Agricultural sustainability
Climate dynamics
Environmental stewardship
Food security
Pakistan
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Elumalai P, Gao X, Parthipan P, Luo J, Cui J. Agrochemical pollution: A serious threat to environmental health. Curr Opin Environ Sci Health. 2025;43:100597. doi: 10.1016/j.coesh.2025.100597

 

  1. Kahiluoto H, Sakieh Y, Kaseva J, et al. Redistribution of nitrogen to feed the people on a safer planet. PNAS Nexus. 2024;3(5):170. doi: 10.1093/pnasnexus/pgae170

 

  1. Tetteh CK. R&D, Innovation and labour productivity: Evidence from the manufacturing sector in Ghana. Sci Afr. 2024;24:e02136. doi: 10.1016/j.sciaf.2024.e02136

 

  1. Galanakis CM. The future of food. Foods. 2024;13(4):506. doi: 10.3390/foods13040506

 

  1. Karunathilake EMBM, Le AT, Heo S, Chung YS, Mansoor S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture. 2023;13(8):1593. doi: 10.3390/agriculture13081593

 

  1. Fuentes-Peñailillo F, Gutter K, Vega R, Silva GC. Transformative technologies in digital agriculture: Leveraging internet of things, remote sensing, and artificial intelligence for smart crop management. J Sensor Actuator Netw. 2024;13(4):39. doi: 10.3390/jsan13040039

 

  1. Rai PK. Role of water-energy-food nexus in environmental management and climate action. Energy Nexus. 2023;11:100230. doi: 10.1016/j.nexus.2023.100230

 

  1. Abanyie SK, Apea OB, Abagale SA, Amuah EEY, Sunkari ED. Sources and factors influencing groundwater quality and associated health implications: A review. Emerg Contam. 2023;9(2):100207. doi: 10.1016/j.emcon.2023.100207

 

  1. Becker M, Clavero R, Khin OM, et al. System shift in rice: Processes and pathways of change in rice-based production systems of Southeast Asia. Agric Syst. 2024;217:103917. doi: 10.1016/j.agsy.2024.103917

 

  1. Sharma UC, Datta M, Sharma V. Land use and management. In: Soils in the Hindu Kush Himalayas. Geography of the Physical Environment. Cham: Springer; 2022. doi: 10.1007/978-3-031-11458-8_7

 

  1. Bhakta I, Phadikar S, Majumder K. State-of-the-art technologies in precision agriculture: A systematic review. J Sci Food Agric. 2019;99(11):4878-4888. doi: 10.1002/jsfa.9693

 

  1. Onyango CM, Nyaga JM, Wetterlind J, Söderström M, Piikki K. Precision agriculture for resource use efficiency in smallholder farming systems in Sub-Saharan Africa: A systematic review. Sustainability. 2021;13(3):1158. doi: 10.3390/su13031158

 

  1. Erickson B, Fausti SW. The role of precision agriculture in food security. Agron J. 2021;113(6):4455-4462. doi: 10.1002/agj2.20919

 

  1. Mansoor S. Pakistan’s water security crisis: Challenges and the case for integrated water resource management. NUST J Int Peace Stab. 2025; 8(1):30-47. doi: 10.37540/njips.v8i1.184

 

  1. Mahmood S. Infrastructure and economic growth in Pakistan: An empirical analysis. Econ Model. 2022;107:105252. doi: 10.37540/njips.v8i1.184

 

  1. Knippenberg E, Amadio M, Meyer M. Poverty impacts of the Pakistan flood 2022. Econ Disasters Clim Change. 2024;8(3):453-471. doi: 10.1007/s41885-024-00155-3

 

  1. Fahad S, Wang J. Climate change, vulnerability, and its impacts in rural Pakistan: A review. Environ Sci Pollut Res. 2020;27:1334-1338. doi: 10.1007/s11356-019-06878-1

 

  1. Feng Y, Sun M, Pan Y, Zhang C. Fostering inclusive green growth in China: Identifying the impact of the regional integration strategy of Yangtze River Economic Belt. J Environ Manage. 2024;358:120952. doi: 10.1016/j.jenvman.2024.120952

 

  1. De Rosa M, Bartoli L, Del Giudice T, Vecchio Y. Conducive environments and entrepreneurial access to rural policies. Sustainability. 2022;14(9):4951. doi: 10.3390/su14094951

 

  1. Raihan A, Muhtasim DA, Farhana S, et al. Nexus between economic growth, energy use, urbanization, agricultural productivity, and carbon dioxide emissions: New insights from Bangladesh. Energy Nexus. 2022;8:100144. doi: 10.1016/j.nexus.2022.100144

 

  1. Mgendi G. Unlocking the potential of precision agriculture for sustainable farming. Discov Agric. 2024;2(1):87. doi: 10.1007/s44279-024-00078-3

 

  1. Nath S. A vision of precision agriculture: Balance between agricultural sustainability and environmental stewardship. Agron J. 2024;116(3):1126-1143. doi: 10.1002/agj2.21405

 

  1. Arion FH, Harutyunyan G, Aleksanyan V, Muradyan M, Asatryan H, Manucharyan M. Determining digitalization issues (ICT adoption, digital literacy, and the digital divide) in rural areas by using sample surveys: the case of Armenia. Agriculture. 2024;14(2):249. doi: 10.3390/agriculture14020249

 

  1. Su Q, Singh VP. Advancing irrigation management: Integrating technology and sustainability to address global food security. Environ Monit Assess. 2024;196(11):1018. doi: 10.1007/s10661-024-13145-5

 

  1. Zhao J, Yang J, Xie H, Qin X, Huang R. Sustainable management strategies for balancing crop yield, water use efficiency and greenhouse gas emissions. Agric Syst. 2024;217:103944. doi: 10.1016/j.agsy.2024.103944

 

  1. Wang L, Vo XV, Shahbaz M, Ak A. Globalization and carbon emissions: Is there any role of agriculture value-added, financial development, and natural resource rent in the aftermath of COP21? J Environ Manage. 2020;268:110712. doi: 10.1016/j.jenvman.2020.110712

 

  1. Gelgo Dube B, Gemechu Gobena A, Bedemo Beyene A. Distortion of agricultural incentives in East Africa: Effects on agricultural value added. Cogent Econ Finance. 2024;12(1):2285068. doi: 10.1080/23322039.2023.2285068

 

  1. Khan N, Ray RL, Kassem HS, Zhang S. Mobile internet technology adoption for sustainable agriculture: Evidence from wheat farmers. Appl Sci. 2022;12(10):4902. doi: 10.3390/app12104902

 

  1. Jararweh Y, Fatima S, Jarrah M, AlZu’bi S. Smart and sustainable agriculture: Fundamentals, enabling technologies, and future directions. Comput Electr Eng. 2023;110:108799. doi: 10.1016/j.compeleceng.2023.108799

 

  1. Júnior MRB, de Almeida Moreira BR, dos Santos Carreira V, et al. Precision agriculture in the United States: A comprehensive meta-review inspiring further research, innovation, and adoption. Comput Electron Agric. 2024;221:108993. doi: 10.1016/j.compag.2024.108993

 

  1. Alabdali SA, Pileggi SF, Cetindamar D. Influential factors, enablers, and barriers to adopting smart technology in rural regions: A literature review. Sustainability. 2023;15(10):7908. doi: 10.3390/su15107908

 

  1. Raihan A, Tuspekova A. Dynamic impacts of economic growth, energy use, urbanization, agricultural productivity, and forested area on carbon emissions: New insights from Kazakhstan. World Dev Sustain. 2022;1:100019. doi: 10.1016/j.wds.2022.100019

 

  1. Soko NN, Kaitibie S, Ratna NN. Does institutional quality affect the impact of public agricultural spending on food security in Sub-Saharan Africa and Asia? Glob Food Sec. 2023;36:100668. doi: 10.1016/j.gfs.2022.100668

 

  1. Peng J, Zhao Z, Liu D. Impact of agricultural mechanization on agricultural production, income, and mechanism: Evidence from Hubei province, China. Front Environ Sci. 2022;10:838686. doi: 10.3389/fenvs.2022.838686

 

  1. Mutengwa CS, Mnkeni P, Kondwakwenda A. Climate-smart agriculture and food security in Southern Africa: A review of the vulnerability of smallholder agriculture and food security to climate change. Sustainability. 2023;15(4):2882. doi: 10.3390/su15042882

 

  1. Abekoon T, Sajindra H, Rathnayake N, et al. A novel application with explainable machine learning (SHAP and LIME) to predict soil N, P, and K nutrient content in cabbage cultivation. Smart Agric Technol. 2025;11:100879. doi: 10.1016/j.atech.2025.100879

 

  1. Soussi A, Zero E, Sacile R, Trinchero D, Fossa M. Smart sensors and smart data for precision agriculture: A review. Sensors. 2024;24(8):2647. doi: 10.3390/s24082647

 

  1. Ahmad U, Sharma L. A review of best management practices for potato crop using precision agricultural technologies. Smart Agric Technol. 2023;4:100220. doi: 10.1016/j.atech.2023.100220

 

  1. Waqas MM, Wasim M, Ashraf M, Jatoi WN. Engineering principles of precision farming: Pathway for the developing countries to ensure food security. In: Jatoi WN, Mubeen M, Hashmi MZ, et al., editors. Climate Change Impacts on Agriculture. Cham: Springer; 2023. doi: 10.1007/978-3-031-26692-8_7

 

  1. Ji M, Zhang X. Assessing the impacts and mechanisms of green bond financing on the enhancement of green management and technological innovation in environmental conservation enterprises. J Knowl Econ. 2023;3:12709-50. doi: 10.1007/s13132-023-01594-1

 

  1. Gemtou M, Kakkavou K, Anastasiou E, et al. Farmers’ transition to climate-smart agriculture: A systematic review of the decision-making factors affecting adoption. Sustainability. 2024;16(7):2828. doi: 10.3390/su16072828

 

  1. Imran M, Sattar A, Alam MS. Heterogeneous analysis of free trade agreement between Pakistan and China: A policy guideline for CPEC. J Econ Adm Sci. 2024;40(1):76-94. doi: 10.1108/JEAS-02-2022-0051

 

  1. Jobarteh B, Neethirajan S. Leveraging satellite data for greenhouse gas mitigation in Canadian poultry farming. Smart Agric Technol. 2025;10:100704. doi: 10.1016/j.atech.2024.100704

 

  1. Sweet LB, Athanasiadis IN, van Bree R, et al. Transdisciplinary coordination is essential for advancing agricultural modeling with machine learning. One Earth. 2025;8(4):101233. doi: 10.1016/j.oneear.2025.101233

 

  1. World Bank. World Development Indicators. Washington, D.C.: World Bank; 2023. Available from: https://databank.worldbank.org/source/world-development-indicators [Last accessed on 2025 Jan 15].

 

  1. CCKP. Climate Change Overview: Country Summary. World Bank Climate Knowledge Portal; 2023. Available from: https://climateknowledgeportal.worldbank.org/ country/Pakistan [Last accessed on 2025 Jan 15].

 

  1. Pesaran MH, Shin Y, Smith RJ. Bounds testing approaches to the analysis of level relationships. J Appl Econometrics. 2001;16(3):289-326. doi: 10.1002/jae.616

 

  1. Jiang T, Zhong M, Gao A, Ma G. Do factor misallocations affect food security? Evidence from China. Agriculture. 2024;14(5):729. doi: 10.3390/agriculture14050729

 

  1. Zahoor I, Mushtaq A. Water pollution from agricultural activities: A critical global review. Int J Chem Biochem Sci. 2023;23(1):164-176.

 

  1. Stevenson JR, Macours K, Gollin D. The rigor revolution: New standards of evidence for impact assessment of international agricultural research. Annu Rev Resour Econ. 2023;15:495-515.

 

  1. Rehman KU, Andleeb S, Ashfaq M, Akram N, Akram MW. Blockchain-enabled smart agriculture: Enhancing data-driven decision making and ensuring food security. J Clean Prod. 2023;427:138900. doi: 10.1016/j.jclepro.2023.138900

 

  1. Liang C, Shah T. IoT in agriculture: The future of precision monitoring and data-driven farming. Eigenpub Rev Sci Technol. 2023;7(1):85-104.

 

  1. Hassan M, Kowalska A, Ashraf H. Advances in deep learning algorithms for agricultural monitoring and management. Appl Res ArtifIntell Cloud Comput. 2023;6(1):68-88.

 

  1. Tripathi PK, Singh CK, Singh R, Deshmukh AK. A farmer-centric agricultural decision support system for market dynamics in a volatile agricultural supply chain. Benchmarking Int J. 2023;30(10):3925-3952. doi: 10.1108/BIJ-12-2021-0780

 

  1. Bokolo AJ. Examining the adoption of sustainable eMobility-sharing in smart communities: Diffusion of innovation theory perspective. Smart Cities. 2023;6(4):2057-2080. doi: 10.3390/smartcities6040095

 

  1. Haruna LZ, Sennuga SO, Bamidele J, et al. Factors influencing farmers’ adoption of improved technologies in maize production in Kuje Area Council of FCT-Abuja, Nigeria. GPH Int J Agric Res. 2023;6(4):25-41.doi: 10.5281/zenodo.7924557

 

  1. Nery LM, da Cunha e Silva DC, Sabonaro DZ. Agriculture technology transfer: A multicriteria analysis for decision making. Environ Dev Sustain. 2024;26(6):15515-15533. doi: 10.1007/s10668-023-03261-6

 

  1. Ma B, Karimi MS, Mohammed KS, Shahzadi I, Dai J. Nexus between climate change, agricultural output, fertilizer use, agriculture soil emissions: Novel implications in the context of environmental management. J Clean Prod. 2024;450:141801. doi: 10.1016/j.jclepro.2024.141801

 

  1. Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nat Rev Earth Environ. 2023;4(1):4-18. doi: 10.1038/s43017-022-00366-w

 

  1. Hu M, Wade AJ, Shen W, et al. Effects of different organic fertilizers on nitrous oxide and methane emissions from double-cropping rice fields. Pedosphere. 2024;34(1):52-62. doi: 10.1016/j.pedsph.2023.03.006

 

  1. Gawande V, Saikanth DRK, Sumithra BS, et al. Potential of precision farming technologies for eco-friendly agriculture. Int J Plant Soil Sci. 2023;35(19):101-112. doi: 10.9734/IJPSS/2023/v35i193528
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing