AccScience Publishing / AJWEP / Online First / DOI: 10.36922/ajwep.8523
ORIGINAL RESEARCH ARTICLE

Variation in phytochemical and functional traits of Suaeda monoica across three sites in Jeddah, Saudi Arabia

Ameina S. Almoshadak*
Show Less
1 Department of Biological Sciences, Faculty of Science, King Abdulaziz University Jeddah, Jeddah, Saudi Arabia
Received: 13 January 2025 | Revised: 25 February 2025 | Accepted: 28 February 2025 | Published online: 28 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study explores the intricate relationship between collection sites and the physiological responses of Suaeda monoica in Jeddah, focusing on photosynthetic pigment levels, osmomodulatory compounds, secondary metabolites, antioxidant potential, nutrient content, and heavy metal accumulation. Site (S)1 sample exhibited the highest chlorophylls a and b contents, whereas the S3 sample showed superior carotenoid levels. Osmoregulatory compounds demonstrated significant site-specific variations, with the S3 sample displaying elevated soluble sugar levels and the S1 sample showing heightened levels of soluble proteins and free amino acids. Secondary metabolites, encompassing phenols, flavonoids, alkaloids, and terpenoids, exhibited distinct accumulation patterns in samples across sites, with phenols being the most prevalent. In addition, the site samples’ antioxidant potential (1,1-diphenyl-2-picrylhydrazyl activity and total antioxidant capacity) varied significantly, with the S1 sample displaying notable antioxidant capacity. The gas chromatography-mass spectrometry analysis of S. monoica leaf ethanolic extracts revealed significant qualitative and quantitative variances linked to the collection sites, revealing a rich diversity of chemical classes. Site-specific phytoconstituents, such as palmitic and nonanoic acids, and unique compounds, such as 2-thiazolamine, characterized the compositions at different sites, suggesting an environmental influence on phytochemical profiles. Furthermore, nitrogen and phosphorus levels varied significantly across sites and plant organs, with the S1 sample showing elevated nitrogen content in roots and phosphorus content in leaves. Heavy metal accumulation varied markedly between soil, roots, and leaves, emphasizing the phytoremediation potential of S. monoica. Collectively, these results illustrated the versatility and phytoremediation potential of S. monoica with its growth habitat.

Keywords
Suaeda monoica
Halophytes
Secondary metabolites
Osmotic adjustment
Antioxidative potential
Phytochemical composition
Phytoremediation
Funding
None.
Conflict of interest
The author declares no conflicts of interest.
References
  1. Shakthi A, Linoj J, Suresh V, Hussein M, Selvamani M. Evaluation of antibacterial and anti-oxidant activities of Suaeda monoica extract for its potential application. Cureus. 2024;16(1):e53091. doi: 10.7759/cureus.53091

 

  1. Rajathi F, Arumugam R, Saravanan S, Anantharaman P. Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. J Photochem Photobiol B Biol. 2014;135:75-80. doi: 10.1016/j.jphotobiol.2014.03.016

 

  1. Roy M, Dutta TK. Evaluation of phytochemicals and bioactive properties in mangrove associate Suaeda monoica Forssk. ex J.F.Gmel. of Indian sundarbans. Front. Pharmacol., 2021;12:e584019. doi: 10.3389/fphar.2021.584019

 

  1. Aluri JSR, Kumar R, Chappidi PR. Reproductive biology of mangrove plants Clerodendrum inerme, Derris trifoliata, Suaeda maritima, Suaeda monoica, Suaeda nudiflora. Transylv Rev Syst Ecol Res. 2016;18(3):31-68. doi: 10.1515/trser-2015-0092

 

  1. Ibraheem F, Al-Zahrani A, Mosa A. Physiological adaptation of three wild halophytic Suaeda species: Salt tolerance strategies and metal accumulation capacity. Plants (Basel). 2022;11:e537. doi: 10.3390/plants11040537

 

  1. Lakshmanan G, Rajeshkannan C, Kavitha A, Mekala B, Kamaladevi N. Preliminary screening of biologically active constituents of Suaeda monoica and Sesuvium portulocastrum from palayakayal mangrove forest of Tamilnadu. J Pharmacogn Phytochem. 2013;2(3):149-152.

 

  1. Elsharabasy FS, Metwall NS, Mahmoud AH, et al. Phytoconstituents and hepatoprotective effect of Suaeda monoica Forssk and Suaeda pruinosa Lange. Biomed Pharmacol J. 2019;12:117-129. doi: 10.13005/bpj/1620

 

  1. Joshi A, Kanthaliya B, Rajput V, Minkina T, Arora J. Assessment of phytoremediation capacity of three halophytes: Suaeda monoica, Tamarix indica and Cressa critica. Biol Futur. 2020;71:301-312. doi: 10.1007/s42977-020-00038-0

 

  1. Ayyappan D, Ravindran KC. Potentiality of Suaeda monoica Forsk. A salt marsh halophyte on bioaccumulation of heavy metals from tannery effluent. Int J Mod Res Rev. 2014;2:267-274.

 

  1. Song H, Sun Z. Temporal variations and bioaccumulation of heavy metals in different Suaeda salsa marshes of the Yellow River estuary, China. Environ Sci Pollut Res. 2014;21:14174-14187. doi: 10.1007/s11356-014-3296-7

 

  1. Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S. Halophyte agriculture: Success stories. Environ Exp Bot. 2014;107:71-83. doi: 10.1016/j.envexpbot.2014.05.006

 

  1. Muthazhagan K, Thirunavukkarasu P, Ramanathan T, Kannan D. Studies on phytochemical screening, antimicrobial and anti radical scavenging effect coastal salt mash plant of a Suaeda monoica. Res J Phytochem. 2014;8:102-111.

 

  1. Hawas UW, El-Kassem LTA, Shaher FM, Al-Farawati R, Ghandourah M. Phytochemical compositions of some red sea halophyte plants with antioxidant and anticancer potentials. Molecules. 2022;27:e3415. doi: 10.3390/molecules27113415

 

  1. Ravikumar S, Gnanadesigan M, Serebiah J, Inbaneson S. Hepatoprotective effect of an Indian salt marsh herb Suaeda monoica Forsk. Ex. Gmel against concanavalin-A induced toxicity in rats. Life Sci Med Res. 2010;2010:1-9.

 

  1. Siddiqui NA, Mothana RA, Al-Said MS, et al. Cell proliferation activity delineated by molecular docking of four new compounds isolated from the aerial parts of Suaeda monoica Forssk. ex. J.F. Gmel. Saudi Pharm J. 2020;28:172-186. doi: 10.1016/j.jsps.2019.11.019

 

  1. Al-Said MS, Siddiqui NA, Mukhair MA, et al. A novel monocyclic triterpenoid and a norsesquaterpenol from the aerial parts of Suaeda monoica Forssk. ex J.F. Gmel with cell proliferative potential. Saudi Pharm J. 2017;25:1005-1010. doi: 10.1016/j.jsps.2017.03.008

 

  1. Lakshmanan G, Rajeshkannan C, Kavitha A, Mekala B, Kamaladevi N. Preliminary screening of biologically active constituents of Suaeda monoica and Sesuvium portulacastrum from palayakayal mangrove forest of Tamilnadu. J Pharmacogn Phytochem. 2013;2:149-152.

 

  1. AOAC. Official Methods of Analysis of Association of Official Analytical Chemists. 18th ed. Washington, DC, USA: AOAC; 2010.

 

  1. Metzner H, Rau H, Senger H, et al. Trace elements’ uptake and antioxidant response to excess of manganese in in vitro cells of sensitive and tolerant wheat. Planta. 1965;65:186-194. doi: 10.1007/bf00384998

 

  1. Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1965;28:350-356. doi: 10.1021/ac60111a017

 

  1. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. doi: 10.1016/0003-2697(76)90527-3

 

  1. Lee YYP, Takahashi T. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem. 1966;14:71-77. doi: 10.1016/0003-2697(66)90057-1

 

  1. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205-207. doi: 10.1007/BF00018060

 

  1. Jindal KK, Singh RN. Phenolic content in male and female Carica papaya: A possible physiological marker for sex identification of vegetative seedlings. Physiol Plant. 1975;33:104-107. doi: 10.1111/j.1399-3054.1975.tb03774.x

 

  1. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10:178-182.

 

  1. Shamsa F, Monsef H, Ghamooshi R, Verdian-Rizi M. Spectrophotometric determination of total alkaloids in some Iranian medicinal plants. J Appl Hortic. 2010;12:69-70.

 

  1. Ghorai N, Chakraborty S, Gucchait S, Saha SK, Biswas S. Estimation of total terpenoids concentration in plant tissues using a monoterpene, linalool as standard reagent. Protoc Exch. 2012;5.

 

  1. Sermakkani M, Thangapandian V. Phytochemical screening for active compounds in Pedalium murex L. Recent Res Sci Technol. 2010;2:110-114.

 

  1. Ahmed D, Baig H, Zara S. Seasonal variation of phenolics, flavonoids, antioxidant and lipid peroxidation inhibitory activity of methanolic extract of Melilotus indicus and its sub-fractions in different solvents. Int J Phytomed. 2012;4:326-332.

 

  1. Saad-Allah KM, Elhaak MA. Hyperaccumulation activity and metabolic responses of Solanum nigrum in two differentially polluted growth habitats. J Saudi Soc Agric Sci. 2017;16:227-235. doi: 10.1016/j.jssas.2015.08.001

 

  1. Ltaeif HB, Sakhraoui A, González-Orenga S, et al. Responses to salinity in four Plantago species from Tunisia. Plants. 2021;10:e1392. doi: 10.3390/plants10071392

 

  1. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651-681. doi: 10.1146/annurev.arplant.59.032607.092911

 

  1. Ashraf M, Harris PJC. Photosynthesis under stressful environments: An overview. Photosynthetica. 2013;51(2):163-190. doi: 10.1007/s11099-013-0021-6

 

  1. Rangani J, Parida AK, Panda A, Kumari A. Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme halophyte Salvadora persica L. Front Plant Sci. 2016;7:e50. doi: 10.3389/fpls.2016.00050

 

  1. Ben Hsouna A, Michalak M, Kukula-Koch W, et al. Evaluation of halophyte biopotential as an unused natural resource: The case of Lobularia maritima. Biomolecules. 2022;12:e1583. doi: 10.3390/biom12111583

 

  1. Chaudhry S, Sidhu GPS. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022;41:1-31. doi: 10.1007/s00299-021-02759-5

 

  1. Ghanem AMFM, Mohamed E, Kasem AMMA, El-Ghamery AA. Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants. 2021;10:e1100. doi: 10.3390/plants10061100

 

  1. Boughalleb F, Denden M. Physiological and biochemical changes of two halophytes, Nitraria retusa (Forssk.) and Atriplex halimus (L.) under increasing salinity. Agric J. 2011;6:327-339. doi: 10.3923/aj.2011.327.339

 

  1. Haque MI, Siddiqui SA, Jha B, Rathore MS. Interactive effects of abiotic stress and elevated CO2 on physio-chemical and photosynthetic responses in Suaeda species. J Plant Growth Regul. 2022;41:2930-2948. doi: 10.1007/s00344-021-10485-1

 

  1. Mishra A, Tanna B. Halophytes: Potential resources for salt stress tolerance genes and promoters. Front Plant Sci. 2017;8:e829. doi: 10.3389/fpls.2017.00829

 

  1. Parida AK, Jha B. Salt tolerance mechanisms in mangroves: A review. Trees. 2010;24(2):199-217. doi: 10.1007/s00468-010-0417-x

 

  1. Parida AK, Veerabathini SK, Kumari A, Agarwal PK. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Front Plant Sci. 2016;7:e351. doi: 10.3389/fpls.2016.00351

 

  1. Rajput VD, Chen Y, Ayup M. Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth. Russ J Plant Physiol. 2015;62:229-236. doi: 10.1134/S1021443715020168

 

  1. Al-Shamsi N, Hussain MI, El-Keblawy A. Physiological responses of the xerohalophyte Suaeda vermiculata to salinity in its hyper-arid environment. Flora. 2020;273:e151705. doi: 10.1016/j.flora.2020.151705

 

  1. Wang R, Wang X, Liu K, Zhang XJ, Zhang LY, Fan SJ. Comparative transcriptome analysis of halophyte Zoysia macrostachya in response to salinity stress. Plants (Basel). 2020;9:e458. doi: 10.3390/plants9040458

 

  1. Tuteja N, Sopory SK. Chemical signaling under abiotic stress environment in plants. Plant Signal Behav. 2008;3:525-536. doi: 10.4161/psb.3.8.6186

 

  1. Li Q, Song J. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. BMC Plant Biol. 2019;19:388. doi: 10.1186/s12870-019-2006-5

 

  1. Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59(2):206-216. doi: 10.1016/j.envexpbot.2005.12.006

 

  1. Mitra R, Ghosh S, Mukherjee G, Acharya Chowdhury A. Secondary metabolites: Treasure trove for future medicine. In: Mérillon JM, Ramawat KG, editors. Plant Specialized Metabolism for Plant Protection: Genomics and Biotechnology. Cham: Springer Nature Switzerland; 2023. p. 1-45.

 

  1. D’Auria JC, Gershenzon J. The secondary metabolism of Arabidopsis thaliana: Growing like a weed. Curr Opin Plant Biol. 2005;8:308-316. doi: 10.1016/j.pbi.2005.03.012

 

  1. Arbona V, Iglesias DJ, Talón M, Gómez-Cadenas A. Plant phenotype demarcation using nontargeted LC-MS and GC-MS metabolite profiling. J Agric Food Chem. 2009;57:7338-7347. doi: 10.1021/jf9009137

 

  1. Karowe DN, Grubb C. Elevated CO2 increases constitutive phenolics and trichomes, but decreases inducibility of phenolics in Brassica rapa (Brassicaceae). J Chem Ecol. 2011;37:1332-1340. doi: 10.1007/s10886-011-0044-z

 

  1. Demkura PV, Ballaré CL. UVR8 mediates UV-B-induced arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Mol Plant. 2012;5:642-652. doi: 10.1093/mp/sss025

 

  1. Kranner I, Minibayeva FV, Beckett RP, Seal CE. What is stress? Concepts, definitions and applications in seed science. New Phytol. 2010;188:655-673. doi: 10.1111/j.1469-8137.2010.03461.x

 

  1. Boestfleisch C, Wagenseil NB, Buhmann AK, et al. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants. 2014;6:plu046. doi: 10.1093/aobpla/plu046

 

  1. Rodrigues MJ, Soszynski A, Martins A, et al. Unravelling the antioxidant potential and the phenolic composition of different anatomical organs of the marine halophyte Limonium algarvense. Ind Crops Prod. 2015;77:315-322. doi: 10.1016/j.indcrop.2015.08.061

 

  1. Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011;6(11):1720-1731. doi: 10.4161/psb.6.11.17613

 

  1. Miguel MG, Duarte J, Figueiredo AC, Barroso JG, Pedro LG. Thymus carnosus boiss.: Effect of harvesting period, collection site and type of plant material on essential oil composition. J Essent Oil Res. 2005;17:422-426. doi: 10.1080/10412905.2005.9698950

 

  1. Al-Shawi AAA, Hameed MF, Ali NH, Hussein KA. Investigations of phytoconstituents, antioxidant and anti-liver cancer activities of Saueda monoica Forssk extracted by microwave-assisted extraction. Asian Pac J Cancer Prev. 2020;21:2349-2355. doi: 10.31557/APJCP.2020.21.8.2349

 

  1. Martelloni L, Frasconi C, Sportelli M, Fontanelli M, Raffaelli M, Peruzzi A. Flaming, glyphosate, hot foam and nonanoic acid for weed control: A comparison. Agronomy. 2020;10:e129. doi: 10.3390/agronomy10010129

 

  1. Chandrasekaran M, Kannathasan K, Venkatesalu V. Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae. Z Naturforsch C J Biosci. 2008;63:331-336. doi: 10.1515/znc-2008-5-604

 

  1. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909-930. doi: 10.1016/j.plaphy.2010.08.016

 

  1. Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006;7:657-667. doi: 10.1016/S1470-2045(06)70793-8

 

  1. Sun Z, Yu L, Hu X, Chen B. Effects of enhanced nitrogen load on variation and turnover of phosphorus in the plant-soil system of Suaeda salsa marsh in the Yellow River estuary, China. J Soils Sediments. 2023;23:2428-2443. doi: 10.1007/s11368-023-03490-2

 

  1. Hu X, Sun Z. Effects of exogenous nitrogen import on variations of nutrient in decomposing litters of Suaeda salsa in coastal marsh of the Yellow River estuary, China. Environ Sci Pollut Res. 2021;28:33165-33180. doi: 10.1007/s11356-021-12926-6

 

  1. Milić D, Luković J, Ninkov J, et al. Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol. 2012;7:307-317. doi: 10.2478/s11535-012-0015-6

 

  1. Mujeeb A, Aziz I, Ahmed MZ, Alvi SK, Shafiq S. Comparative assessment of heavy metal accumulation and bio-indication in coastal dune halophytes. Ecotoxicol Environ Saf. 2020;195:e110486. doi: 10.1016/j.ecoenv.2020.110486

 

  1. Li B, Wang J, Yao L, et al. Halophyte Halogeton glomeratus, a promising candidate for phytoremediation of heavy metal-contaminated saline soils. Plant Soil. 2019;442:323-331. doi: 10.1007/s11104-019-04152-4

 

  1. Lutts S, Qin P, Han RM. Salinity influences biosorption of heavy metals by the roots of the halophyte plant species Kosteletzkya pentacarpos. Ecol Eng. 2016;95:682-689. doi: 10.1016/j.ecoleng.2016.06.009

 

  1. Kouhi SMM, Moudi M. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline-sodic soil. Environ Sci Pollut Res Int. 2020;27:10027-10038. doi: 10.1007/s11356-019-07578-6
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing