AccScience Publishing / AJWEP / Volume 20 / Issue 5 / DOI: 10.3233/AJW230063
RESEARCH ARTICLE

Crowbar Protection Scheme for Fault Ride Through in a Doubly-fed Induction Generator

Sarthak Seth1 Kusum Tharani1 Sandeep Banerjee1* Chaitanya Chhabra1 Anshika Verma1 Mridul Bhatia1
Show Less
1 Electrical and Electronics Engineering Department, Bharati Vidyapeeth’s College of Engineering, New Delhi, India
AJWEP 2023, 20(5), 33–37; https://doi.org/10.3233/AJW230063
Received: 12 January 2023 | Revised: 22 January 2023 | Accepted: 22 January 2023 | Published online: 22 January 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study focusses on using a crowbar protection scheme to overcome the symmetrical voltage dips in a doubly fed induction generator (DFIG). The crowbar protection scheme is integrated into the wind energy conversion system of the DFIG. The implementation of this scheme provides automated fault ride-through during sudden transients which may otherwise lead to over current faults. The increased use of renewable sources for electricity generation leads to a reduction in pollution which directly benefits the environment. Sustained usage of renewable resources will be beneficial for the environment.

Keywords
Doubly fed induction generator
dynamic crowbar protection
environment
fault ride through
pollution
symmetrical voltage dips.
References
  1. Abad, G., Lopez, J., Rodriguez, M., Marroyo, L. and G.  Lwanski (2011). Doubly -fed induction machine: Modelling  and control for wind energy generation. IEEE Series on  Power Engineering. New Jersey, Canada: John Wiley &  Sons.
  2. Abu-Rub, H., Malinowski M. and K. Al-Haddad (2014).  Power Electronics for Renewable Energy Systems,  Transportation and Industrial Applications. New Jersey,  Canada: John Wiley & Sons.
  3. Ahyaten, S. and J. El Bahaoui (2020). Modeling of wind  turbines based on DFIG generator. Multidisciplinary  Digital Publishing Institute Proceedings, 63(1): 1-8.
  4. Anaya-Lara, O., Campos-Gaona, D., Moreno-Goytia, E.  and G. Adam (2014). Offshore Wind Energy Generation:  Control, Protection, and Integration to Electrical Systems.  West Sussex, United Kingdom: John Wiley & Sons.
  5. Banerjee, S., Joshi, D. and M. Singh (2019). Genetic  algorithm approach for efficiency maximization and  power factor enhancement of a grid connected doubly  fed induction generator. Journal of Information and  Optimization Sciences, 40(2): 535-545.
  6. Banerjee, S., Joshi, D. and M. Singh (2020). Investigations on  two-lead and three-lead rotor connections of doubly fed  induction generator. Asian Journal of Water, Environment  and Pollution, 17(2): 37-42.
  7. Bejaoui, M., Marinescu, B., Slama‐belkhodja, I. and E.  Monmasson (2014). Control of doubly‐fed induction  generator for wind energy in network context. IET  Renewable Power Generation, 8(2): 109-118.
  8. Chen, S., Cheung, N., Zhang, Y., Zhang, M. and X.M. Tang  (2011). Improved grid synchronization control of doubly  fed induction generator under unbalanced grid voltage.  IEEE Transactions on Energy Conversion, 26(3): 799-810.
  9. Kumar, N., Sudha, K. and K. Tharani (2022). Wind power  prediction analysis by ANFIS, GA-ANFIS and PSOANFIS. Journal of Information and Optimization Sciences, 43(1): 1-6.
  10. Makhoba K.G. (2020). Consideration of the effects of  symmetrical and asymmetrical voltage dips in the control  and operation of a grid-connected doubly-fed induction  generator.” PhD diss., University of KwaZulu-Natal.
  11. Sathiyanarayanan, J. and A. Senthil Kumar (2014). Doubly fed  induction generator wind turbines with fuzzy controller: A  survey. The Scientific World Journal, 2014: 1-8.
  12. Xu, D., Blaabjerg, F., Chen, W. and N. Zhu (2018). Advanced  Control of Doubly Fed Induction Generator for Wind  Power Systems. IEEE Series on Power Engineering. New  Jersey, Canada: John Wiley & Sons.
  13. Yang, J., Dorrell, D. and J.E. Fletcher (2008). Fault ridethrough of doubly-fed induction generator with converter  protection schemes. IEEE International Conference on  Sustainable Energy Technologies. pp. 1211-1216.
  14. Yang, L., Xu, Z., Ostergaard, J., Dong, Z. and K.P. Wong  (2012). Advanced control strategy of DFIG wind turbines  for power system fault ride through. IEEE Transactions  on Power Systems, 27(2): 713-722.
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing