AccScience Publishing / AJWEP / Volume 20 / Issue 4 / DOI: 10.3233/AJW230045
RESEARCH ARTICLE

The Ability of Dracaena marginata var. tricolor,  Gratophyllum pictum, and Pedilanthus tithymaloides as Lead Absorbents in the Air

K. Sahani1 F. Rachmadiarti1*
Show Less
1 Jurusan Biologi, Universitas Negeri Surabaya, Surbaya, Indonesia
AJWEP 2023, 20(4), 1–7; https://doi.org/10.3233/AJW230045
Received: 15 September 2022 | Revised: 20 January 2023 | Accepted: 20 January 2023 | Published online: 20 January 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Lead pollution in the air is dangerous for living because toxic and carcinogenic. Dracaena marginata  var. tricolor, Gratophyllum pictum, and Pedilanthus tithymaloides are plants that are often found on the roadside  of Sidoarjo city and are often exposed to lead. This research aims to determine the ability of D. marginata var.  tricolor, G. pictum, and P. tithymaloides as lead absorbents in the air and the relationship between lead content  with plant chlorophyll content. This research is observational. Leaf sampling was carried out at 3 points in  3 locations, namely Buduran Street, Pahlawan Street, and Cemengkalang Street Sidoarjo. The lead content  parameter was measured using Atomic Absorption Spectrophotometry and chlorophyll content was measured using  Spectrophotometer. Data analysis using ANOVA test followed by Duncan test and quantitative descriptive. The  result showed that D. marginata var. tricolor, G. pictum, and P. tithymaloides have the ability as lead absorbents  in the air. The highest to the lowest lead content were G. pictum 0.225±0.005 mg/L, D. marginata var. tricolor  0.087±0.006 mg/L, and P. tithymaloides 0.033±0.022 mg/L. The highest to the lowest chlorophyll content were  G. pictum 13.707±5.028 mg/L, D. marginata var. tricolor 11.851±4.659 mg/L, and P. tithymaloides 11.391±4.256  mg/L. There was no significant effect of lead content on plant chlorophyll content.

Keywords
Chlorophyll content
D. marginata var. tricolor
G. pictum
lead content
P. tithymaloides.
References

Alamsyah, M.A.B. and F. Rachmadiarti (2020). Potential  of Ruellia simplex C.Wright, Plumeria pudica, and  Tabernaemontana sp.var.variegate as lead (Pb) absorbent  in air. LenteraBio, 9(2): 122-128.

Azizah, D.N. and F. Rachmadiarti (2018). Potency of Bakung  (Hymenocallis speciosa), Puring (Codiaeum variegatum),  and Bintaro (Cerbera manghas) as absorbents lead (Pb)  in the air. LenteraBio, 7(3): 195-202.

Fahruddin, C.T.F., Tanjung R.E.F. and F. Samawi (2020).  Absorption of heavy metal lead (Pb) by water hyacinth  (Eichornia crassipes) and its influence to total dissolved  solids of ground water in phytoremediation. J.Akta Kimia  Indonesia, 13(1): 10-15.

Fascavitri, A., Rachmadiarti, F. and A. Bashri (2018).  The potential of plant Chlorophytum comosum,  Pseuderanthemum reticulatum and Platycerium bifurcatum absorbent heavy metal lead (Pb) in the air. LenteraBio,  7(3): 188-195.

Gusnita, D. (2012). Heavy metal lead (Pb) pollution in the air  and efforts to eliminate lead gasoline. Berita Dirgantara,  13(3): 95-101.

Kumar, A., Cabral-Pinto, M.M.S., Chatuverdi, A.K.,  Shabnam, A.A., Subrahmanyam, G., Mondal, R., Gupta,  D.K., Malyan, S.K., Kumar, S.S., Khan, S.A. and K.K.  Yadav (2020). Lead toxicity: Health hazards, influence on  food chain, and sustainable remediation approaches. Int.  J. Environ. Res. Public Health, 17: 1-33.

Levin, R., Vieira, C.L.Z., Mordarski D.C. and M.H.  Rosenbaum (2019). Lead seasonality in humans, animals,  and the natural enviroment. Environment Res., 180:  108797.

Melsandi, M., Latifa, R., Budiyanto, M.A.K., Wahyuni, S. and  Husamah (2020). Analysis of Lead Levels and Chlorophyll  Levels in Trembesi Leaves (Samanea saman) on Soekarno  Hatta Street, Malang as a Source of Biology Learning.  In: Proceedings of National Seminar V, Muhammadiyah  University, Malang: Indonesia.

Nas, F.S and M. Ali (2018). The effect of lead on plants in  terms of growing and biochemical parameters: A review.  MOJ Ecology & Environmental Sciences, 3(4): 265-268.

Nurhikmah, A., Syamsidar, H.S and K. Ramadani (2015).  Bogenvil biosorption (Bougainvillea spectabilis Wild)  against lead emissions (Pb) on motor vehicles. J. Al  Chemistry, 3(2): 42-51.

Priyambodo, P. (2018). Correlation analytic of vehicles  and GDP in East Java Province. Warta Penelitian  Perhubungan, 30(1): 59-65.

Rachmadiarti, F., Purnomo, T., Azizah D.N. and A. Fascavitri  (2019). Syzigium oleina and Wedelia trilobata for  phytoremediation of lead pollution in the atmosphere.  Nature Environment and Pollution Technology, 18(1): 157-162.

Rachmadiarti, F., Asri, M.T., Sari, N.Y., Sahani, K.,  Vatmawati, V.N. and F.A. Nafidiastri (2021). The potential  of Tabebuya as phytoremediator of lead (Pb) in the  atmosphere. ICST 2021, 328: 1-4.

Santoso, S.N. (2013). Use of Plants as Air Pollution  Reduction. Thesis. ITS, Surabaya.

Sidoarjo Regency Police (2021). Traffic Vehicle Data for  Sidoarjo Regency.

Ulfah, M., Rachmadiarti, F. and Y.S. Rahayu (2017). Effect  of lead (Pb) on chlorophyll content of Kiambang (Salvinia  molesta). LenteraBio, 6(2): 44-48.

Yudha, G.P., Noli, Z.A. and M. Idris (2013). Growth  of Angsana leaves (Pterocarpus indicus Willd) and  accumulation of lead (Pb). J. Biologi Universitas Andalas,  2(2): 83-89.

Yuniantara, H.P.K. and S. Kuntjoro (2020). Plant potential  Justicia gendarusa Burm. F., Plumeria alba, and  Plumbago zeylanica as Pb absorbent in air. LenteraBio,  9(3): 250-257.

Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain,  M., Ishfaq, M., Ahmad, M. and M.J. Anjum (2019). Lead  toxicity in plants: Impacts and remediation. J. Environ.  Manag., 250(1): 109557.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing