AccScience Publishing / AJWEP / Volume 20 / Issue 3 / DOI: 10.3233/AJW230032
RESEARCH ARTICLE

Characteristics of Ambient Air Pollutions in Delhi, India

Tofan Agung Eka Prasetya1* Muhammad Rifki Taufik2 Ratnaningtyas Wahyu1 Kusuma Wardani1 Tri Wijayanti Septiarini3 Eka Rosanti4
Show Less
1 Health Department, Faculty of Vocational Studies, Universitas Airlangga, Indonesia
2 Research and Development Center, Indonesian Agency for Meteorology, Climatology, and Geophysics, BMKG
3 Faculty of Economics and Management, University of Darussalam, Indonesia
4 Faculty of Health Science, University of Darussalam, Gontor, Indonesia
AJWEP 2023, 20(3), 1–9; https://doi.org/10.3233/AJW230032
Received: 19 July 2021 | Published online: 19 April 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Air pollution is characterised as the presence of one or more pollutants in the outdoor environment, such as dust, gases, mist, odour, smoke, or vapour. They are harmful to human, plant, or animal life or property or interfere with the healthy nature of life or property in specific amounts, characteristics, or periods. This study aimed to investigate the characteristics of ambient air pollution through relations between determinants to each SO2, NO2, PM10, and suspended particulate matter (SPM) by applying linear regression. The data has been obtained from the official websites of the Indian government based on the real-time pollutant concentrations monitored by stations in an urban and resident areas from 2000 until 2015. The data consisted of eight (8) variables; SO2, NO2, PM10, and SPM as outcomes, month, year, area, and monitoring stations as determinants. The model showed that the month, year, monitoring station, and area were correlated to SO2, NO2, and PM10 concentration. Yet, in SPM concentration, month, year, the station was correlated. The area was not correlated to SPM. Investigation of other predictors was needed to gain information about the increasing air pollution on a global scale.

Keywords
Air pollution
regression
suspended particulate matter.
References
  1. Ahmad, I. and H.K. Sharma (2014). Assessment of SO2 concentration in ambient air and its impact on human  health in the city of Gwalior, India. Octa Journal of  Environmental Research, 2(3): 227-238.
  2. Badami, M.G. (2005). Transport and urban air pollution in  India. Environmental Management, 36(2): 195-204. https:// doi.org/10.1007/s00267-004-0106-x
  3. Balakrishnan, K., Cohen, A. and K.R. Smith (2014).  Addressing the burden of disease attributable to air  pollution in India: The need to integrate across household  and ambient air pollution exposures. Environmental Health  Perspectives, 122(1): A6-A7. https://doi.org/10.1289/ ehp.1307822
  4. Beig, G., Chate, D.M., Sahu, S.K., Parkhi, N.S., Srinivas,  R., Ali, K., Yadav, S. and H.K. Trimbake (2015). GAW  Report No. 217, System of Air Quality Forecasting and  Research (SAFAR-INDIA). Geneva, Switzerland: World  Meteorological Organization.
  5. Beig, G., Srinivas, R., Parkhi, N. S., Carmichael, G.R., Singh,  S., Sahu, S.K., Rathod, A. and S. Maji (2019). Anatomy  of the winter 2017 air quality emergency in Delhi. Science  of The Total Environment, 681: 305-311. https://doi.org/ https://doi.org/10.1016/j.scitotenv.2019.04.347
  6. Bhanarkar, A.D., Purohit, P., Rafaj, P., Amann, M., Bertok,  I., Cofala, J., Rao, P.S., Vardhan, B.H., Kiesewetter,  G., Sander, R., Schöpp, W., Majumdar, D., Srivastava,  A., Deshmukh, S., Kawarti, A. and R. Kumar (2018).  Managing future air quality in megacities: Co-benefit  assessment for Delhi. Atmospheric Environment,  186: 158-177. https://doi.org/https://doi.org/10.1016/j. atmosenv.2018.05.026
  7. Brunekreef, B. and S.T. Holgate (2002). Air pollution and  health. The Lancet, 360(9341): 1233-1242. https://doi. org/10.1016/S0140-6736(02)11274-8
  8. Dey, S., Sarkar, S. and R.P. Singh (2004). Comparison of  aerosol radiative forcing over the Arabian Sea and the  Bay of Bengal. Advances in Space Research, 33(7): 1104-1108. https://doi.org/https://doi.org/10.1016/S0273- 1177(03)00737-3
  9. Gargava, P., Chow, J.C., Watson, J.G. and D.H. Lowenthal  (2014). Speciated PM10 emission inventory for Delhi,  India. Aerosol and Air Quality Research, 14(5): 1515- 1526. https://doi.org/10.4209/aaqr.2013.02.0047
  10. Gibson, M.D., Kundu, S. and M. Satish (2013). Dispersion  model evaluation of PM2.5, NOx and SO2 from point  and major line sources in Nova Scotia, Canada using  AERMOD Gaussian plume air dispersion model.  Atmospheric Pollution Research, 4(2): 157-167. https:// doi.org/https://doi.org/10.5094/APR.2013.016
  11. Guo, H., Sahu, S.K., Kota, S.H. and H. Zhang (2019).  Characterization and health risks of criteria air pollutants  in Delhi, 2017. Chemosphere, 225: 27-34. https://doi.org/ https://doi.org/10.1016/j.chemosphere.2019.02.154
  12. Gurjar, B.R., Ravindra, K. and A.S. Nagpure (2016). Air  pollution trends over Indian megacities and their localto-global implications. Atmospheric Environment, 142: 475-495. https://doi.org/10.1016/j.atmosenv.2016.06.030
  13. India News (2022). Stage 4 Of Pollution Action Plan In  Delhi: Here’s What Will Be Affected. https://www.ndtv. com/india-news/stage-4-of-pollution-action-plan-hereswhat-will-be-affected-3488244
  14. Isha, K. and S. Sharma (2020). Could the National Capital  Region serve as a control region for effective air quality  management in Delhi? May, 1–5. Available from https:// www.researchgate.net/publication/342317980
  15. Jain, S., Sharma, S.K., Vijayan, N. and T.K. Mandal (2020).  Seasonal characteristics of aerosols (PM2.5 and PM10)  and their source apportionment using PMF: A four  year study over Delhi, India. Environmental Pollution,  262: 114337. https://doi.org/https://doi.org/10.1016/j. envpol.2020.114337
  16. Kandlikar, M. and G. Ramachandran (2000). THE causes and  consequences of particulate air pollution in urban India:  A synthesis of the science. Annual Review of Energy and  the Environment, 25(1): 629-684. https://doi.org/10.1146/ annurev.energy.25.1.629
  17. Lelieveld, J., Bourtsoukidis, E., Brühl, C., Fischer, H., Fuchs,  H., Harder, H., Hofzumahaus, A., Holland, F., Marno, D.,  Neumaier, M., Pozzer, A., Schlager, H., Williams, J., Zahn,  A. and H. Ziereis (2018). The South Asian monsoon— pollution pump and purifier. Science, 361(6399): 270  LP-273. https://doi.org/10.1126/science.aar2501
  18. Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K.,  Adair-Rohani, H., AlMazroa, M.A., Amann, M., Anderson,  H.R., Andrews, K.G., et al. (2012). A comparative risk  assessment of burden of disease and injury attributable to  67 risk factors and risk factor clusters in 21 regions, 2010:  A systematic analysis for the Global Burden of Disease  Study 2010. The Lancet, 380(9859): 2224-2260. https:// doi.org/10.1016/S0140-6736(12)61766-8
  19. Marrapu, P., Cheng, Y., Beig, G., Sahu, S., Srinivas, R. and  G.R. Carmichael (2014). Air quality in Delhi during the  Commonwealth Games. Atmospheric Chemistry and  Physics, 14(19): 10619-10630.
  20. Mishra, D. and P. Goyal (2015). Development of artificial  intelligence based NO2 forecasting models at Taj Mahal,  Agra. Atmospheric Pollution Research, 6(1): 99-106.  https://doi.org/https://doi.org/10.5094/APR.2015.012
  21. National Climatic Data Center. (2006). Global Hazards -  January 2006. State of the Climate; National Centers for  Environmental Information (NCEI).
  22. Singh, Gurhash (2022). Graded Response Action Plan(GRAP)  [Internet]. Journals of India. 2022. p. 1. Available from:  https://journalsofindia.com/graded-response-action.
  23. Singh, R.B., Grover, A. and J. Zhan (2014). Inter-seasonal  variations of surface temperature in the urbanized  environment of Delhi using landsat thermal data. Energies,  7(3): 1811-1828. https://doi.org/10.3390/en7031811
  24. Singh, R.P., Dey, S., Tripathi, S.N., Tare, V. and B.  Holben (2004). Variability of aerosol parameters  over Kanpur, northern India. Journal of Geophysical  Research D: Atmospheres, 109(23): 1-14. https://doi. org/10.1029/2004JD004966
  25. Singh, S. and S. Naseema Beegum (2013). Direct radiative  effects of an unseasonal dust storm at a western Indo Gangetic Plain station Delhi in ultraviolet, shortwave, and  longwave regions. Geophysical Research Letters, 40(10): 2444-2449. https://doi.org/10.1002/grl.50496
  26. Singh, V., Biswal, A., Kesarkar, A.P., Mor, S. and K. Ravindra  (2020). High resolution vehicular PM10 emissions over  megacity Delhi: Relative contributions of exhaust and  non-exhaust sources. Science of The Total Environment,  699: 134273. https://doi.org/https://doi.org/10.1016/j. scitotenv.2019.134273
  27. Singh, Y. and U. Kulshrestha (2020). An Analysis of GRAP  Task Force Directions for Improved AQI in Delhi during  2018. Current World Environment, 15(1): 29-41. https:// doi.org/10.12944/cwe.15.1.06
  28. R Core Team (2018). R: A Language and Environment for  Statistical Computing. Vienna, Austria. https://www.rproject.org/
  29. Tiwari, S., Bisht, D.S., Srivastava, A.K., Pipal, A.S., Taneja,  A., Srivastava, M.K. and S.D. Attri (2014). Variability in  atmospheric particulates and meteorological effects on  their mass concentrations over Delhi, India. Atmospheric  Research, 145-146: 45-56. https://doi.org/https://doi. org/10.1016/j.atmosres.2014.03.027
  30. Tongkumchum, P. and D. McNeil (2009). Confidence intervals  using contrasts for regression model. Songklanakarin  Journal of Science and Technology, 31(2): 151-156.
  31. UNEP (2018). Air Pollution in Asia and the Pacific:  Science-based solutions (summary). In: United Nations  Environment Programme.
  32. Upadhyaya, G. and M. Dashore (2010). Monitoring of air  pollution by using fuzzy logic. International Journal on  Computer Science and Engineering, 2: 2282-2286.
  33. Venables, W.N. and B.D. Ripley (2002). Modern applied  statistics with S. In: Statistics and computing. New York:  Springer.
  34. Vinay Vaish, H. Mehta (2017). India: Environment  Laws In India. https://www.mondaq.com/india/wastemanagement/624836/environment-laws-in-india
  35. Weather and Climate (2020). Climate in New Delhi (Delhi  NCR), India.
  36. Weatherspark (2021). Average Weather in New Delhi, India,  Year Round.
  37. World Health Organization. Regional Office for Europe.  (1980). Glossary on air pollution. World Health  Organization. Regional Office for Europe.
  38. Yadav, R., Sahu, L.K., Beig, G., Tripathi, N. and S.N.A.  Jaaffrey (2017). Ambient particulate matter and carbon  monoxide at an urban site of India: Influence of  anthropogenic emissions and dust storms. Environmental  Pollution, 225: 291-303. https://doi.org/https://doi. org/10.1016/j.envpol.2017.01.038
  39. Yadav, R., Sahu, L.K., Jaaffrey, S.N.A. and Beig, G. (2014).  Temporal variation of particulate matter (pm) and potential  sources at an urban site of Udaipur in Western India.  Aerosol and Air Quality Research, 14(6): 1613-1629.  https://doi.org/10.4209/aaqr.2013.10.0310
  40. Yadav, S.K., Kumar, V., Jain, A.K., Sharma, D. and J. Zaidi  (2013). Status of ambient air quality of the residential,  commercial, heavy traffic street and sensitive areas of  Jhansi City, Bundelkhand (India). International Journal  of Advanced Scientific and Technical Research, 2(3): 132-145.
  41. Yoo, J.-M., Lee, Y.-R., Kim, D., Jeong, M.-J., Stockwell,  W.R., Kundu, P.K., Oh, S.-M., Shin, D.-B. and S.-J. Lee  (2014). New indices for wet scavenging of air pollutants  (O3, CO, NO2, SO2, and PM10) by summertime rain.  Atmospheric Environment, 82: 226-237. https://doi.org/ https://doi.org/10.1016/j.atmosenv.2013.10.022
  42. Zhu, T., Melamed, M.L., Parrish, D., Gauss, M., Klenner,  L.G., Lawrence, M.G., Konare, A. and C. Liousse (2012).  WMO/IGAC impacts of megacities on air pollution and  climate. World Meteorological Organization.
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing