AccScience Publishing / AJWEP / Volume 20 / Issue 2 / DOI: 10.3233/AJW230020
RESEARCH ARTICLE

The High Lead Level Role in the DNA Repair RAD 18 and OGG1 Gene Polymorphism in Gasoline Station Workers

Aizhar Hamzih Hasan1 Dhuha Salman Asker Aljuboory2 Hawraa Hamid Hussein3 Mona N. Al-Terehi1*
Show Less
1 Department of Biology/Biotechnology, College of Science, University of Babylon, Hillah, Iraq
2 Department of Medical Laboratory Techniques, Al-Mustaqbal University College, Hillah, Iraq
3 Department of Physiology and Medical Physics, College of Medicine, University of Al-Ameed, Karbala, Iraq
AJWEP 2023, 20(2), 17–22; https://doi.org/10.3233/AJW230020
Received: 4 May 2022 | Revised: 23 June 2022 | Accepted: 23 June 2022 | Published online: 23 June 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The DNA repair enzymes–heavy metal interaction is an interesting project that can help elucidate  several diseases. The current study aims to assess the lead effect in the two DNA repair genes RAD-18 Arg302Gln  (rs373572) and OGG1 Ser326Cys in Gasoline station workers. The output showed that work types were Gasoline  supply worker with a high percentage (73.52%) than other groups (11.76% and 14.7%) for a maintenance worker and station employee, respectively, significant lead (p 0.010) increasing in station worker than the control group,  and significant lead changes among work types groups (p 0.000), the station employee has a low level of lead than  other groups, while the Gasoline supply worker has a higher level than other groups, the RAD 18 gene showed  two polymorphisms Gln/Gln and Gln/Arg, and OGG1 showed two haplotypes, single and double haplotypes,  non-significant association although of high frequent of Glu/Arg in the gasoline supply worker, and significant  association of allele frequency, significant association with station worker that have two types of haplotypes  (single and double haplotypes) while lack of tri-haplotypes which prepared in higher percentage in control group.  The lead level according to RAD 18 genotyping show non-significant (p 0.454) elevation in Gln/Arg genotyping,  and according to OGG 1 haplotype lead level was non-significant, changed (p 0.481) between single and double  haplotypes. From these outputs, it can be concluded that the lead level is a significant elevation in gasoline station  worker and it did not affect RA18 and OGG 1 genotyping, the RAD18 did not associate with workers while  OGG strongly associated with them.

Keywords
Lead level
DNA repair
RAD 18
OGG1
gene polymorphism
gasoline station workers.
References

Abdullah, M., Rahman, F.A., Gnanasegaran, N., Govindasamy,  V. Abu Kasim, N.H. and S. Musa (2014). Diverse effects of  lead nitrate on the proliferation, differentiation, and gene  expression of stem cells isolated from a dental origin. Sci.  World J., 2014: 1-12.

Alhaj, A. (2020). Occupational lead exposure among petrol  station workers in Sana’a City, Yemen: Awareness and selfreported symptoms. Zagazig University Medical Journal, 26(5): 795-805. doi: 10.21608/zumj.2020.20291.1633

Borghini, A., Gianicolo, E.A. and M.G. Andreassi (2016).  Usefulness of biomarkers as intermediate endpoints in  health risks posed by occupational lead exposure. Int J  Occup Med Environ Health, 29: 167-178. 

Brewster, U.C. and M.A. Perazella (2004). A review of  chronic lead intoxication: An unrecognized cause of  chronic kidney disease. Am J Med Sci., 327: 341-347. 

Chen, L., Xu, Z., Liu, M., et al. (20120). Lead exposure  assessment from study near a lead-acid battery factory in  China. Sci Total Environ., 429: 191-198. 

Das, S., Nath, S., Bhowmik, A., Ghosh, S.K. and Y.  Choudhury (2016). Association between OGG1 Ser326Cys  polymorphism and risk of upper aero-digestive tract and  gastrointestinal cancers: A metaanalysis. Springerplus, 5: 227.

Das, S., Purkayastha, S., Roy, H., Sinha, A. and Y. Choudhury  (2018). Polymorphisms in DNA repair genes increase the  risk for type 2 diabetes mellitus and hypertension. Biomol  Concepts, 9(1): 80-93. doi: 10.1515/bmc-2018-0008

Gadhia, S.R., Calabro, A.R. and F.A. Barile (2012). Trace  metals alter DNA repair and histone modification pathways  concurrently in mouse embryonic stem cells. Toxicol. Lett.,  212: 169-179. 

Garcia-Leston, J., Mendez, J. Pasaro, E. and B. Laffon (2010).  Genotoxic effects of lead: An updated review. Environ  Int., 36: 623-636. 

Garcia-Leston, J., Roma-Torres, J., Vilares, M., et al. (2012).  Genotoxic effects of occupational exposure to lead and  influence of polymorphisms in genes involved in lead  toxicokinetics and in DNA repair. Environ Int., 43: 29-36. 

Hartwig, A. (1994). Role of DNA repair inhibition in lead-and  cadmium-induced genotoxicity: A review. Environ. Health  Perspect., 102(Suppl. 3): 45-50.

Hartwig, A., Schlepegrell, R. and D. Beyersmann (1990).  Indirect mechanism of lead-induced genotoxicity in  cultured mammalian cells. Mutat. Res. Toxicol., 241: 75-82.

Hemmaphan, S. and N.K. Bordeerat (2022).Genotoxic effects  of lead and their impact on the expression of DNA repair  genes. Int. J. Environ. Res. Public Health, 19: 4307.  https://doi.org/10.3390/ ijerph19074307

Hikmet, J., Dhia, J.A., Saad, I.A. and I.V. Qasim (1987). Lead  absorption in petrol filling station workers in Baghdad city.  J Fac Med Baghdad, 29(1): 95-102. 

Ibrahem, S., Hassan, M., Ibraheem, Q. and K. Arif (2020).  Genotoxic effect of lead and cadmium on workers at  wastewater plant in Iraq. J. Environ. Public Health, 2020: 1-9.

Johnson, F. (1998). The genetic effects of environmental lead.  Mutat. Res. Mutat. Res., 410: 123-140. 

Kanzaki H, Ouchida M, Hanafusa H, et al. (2007). Single  nucleotide polymorphism in the RAD18 gene and risk of  colorectal cancer in the Japanese population. Oncology  Reports, 18: 1171-1175.

Kanzaki, H., Ouchida, M., Hanafusa, H., et al. (2008). The  association between RAD18 Arg302Gln polymorphism  and the risk of human non-small-cell lung cancer. Journal  of Cancer Research and Clinical Oncology, 134: 211-217.

Kasuba, V., Rozgaj, R., Milic, M., et al. (2012). Evaluation  of genotoxic effects of lead in pottery-glaze workers  using micronucleus assay, alkaline comet assay and  DNA diffusion assay. Int Arch Occup Environ Health.,  85: 807-818.

Khadairi, M.M., Almamoori, A.M., AL-Janabi, A. and M.  Al-amari (2021). Genotoxic effects of lead and cadmium  on DNA of some fuel stations workers blood in Hilla City.  IOP Conf. Ser.: Earth Environ. Sci., 910: 012032.

Kuznetsov, N.A., Koval, V.V. and O.S. Fedorova (2011).  Mechanism of recognition and repair of damaged DNA  by human 8-oxoguanine DNA glycosylase hogg1.  Biochemistry (Mosc), 76: 118-130. 

Lahtz, C. and G.P. Pfeifer (2011). Epigenetic changes of  DNA repair genes in cancer. J. Mol. Cell Biol., 3: 51-58. 

Li, P. and T.G. Rossman (2001). Genes upregulated in  lead-resistant glioma cells reveal possible targets for  lead-induced developmental neurotoxicity. Toxicol. Sci.,  64: 90-99. 

Liu, X., Wu, J., Shi, W., Shi, W., Liu, H. and X. Wu (2018).  Lead induces genotoxicity via oxidative stress and promoter methylation of DNA repair genes in human  lymphoblastoid TK6 cells. Med Sci Monit., 24: 4295-4304.  doi: 10.12659/MSM.908425. 

Mahdi, J.K. (1997). Levels of heavy metals in seledted risk  groups in Basrh. MSc thesis, University of Basrah. 

Méndez-Gómez, J., García-Vargas, G.-G., López-Carrillo, L.,  Calderón-Aranda, E.-S., Gómez, A., Vera, E., Valverde,  M., Cebrián, M.E. and E. Rojas (2008). Genotoxic effects  of environmental exposure to arsenic and lead on children  in region lagunera, Mexico. Ann. N. Y. Acad. Sci., 1140: 358-367. 

Moline, J.M. (2005). Landrigan. Lead. In: Rosenstock,  L., Cullen, M.R., Brodkin, C.A., Redlich, C.A. (eds.).  Textbook of occupational and environmental medicine.  Second ed. Philadelphia: Elsevier Saunders, pp. 986-977.

Nersesyan, A., Kundi, M., Waldherr, M., et al. (2016).  Results of micronucleus assays with individuals who are  occupationally and environmentally exposed to mercury,  lead and cadmium. Mutat Res., 770: 119-139.

Nuwayhid, I., McPhaul, K., Bu-Khuzam, R., Duh, S.H.,  Christenson, R.H. and J.P. Keogh (2001). Determinants of  elevated blood lead levels among working men in Greater  Beirut. J Med Liban., 49(3): 132-139. 

Pasha Shaik, A., Sankar, S., Reddy, S.C., et al. (2006). Leadinduced genotoxicity in lymphocytes from peripheral  blood samples of humans: In vitro studies. Drug Chem  Toxicol., 29: 111-124. 

Pi, J., Zhang, Q., Fu, J., et al. (2010). Ros signaling, oxidative  stress and nrf2 in pancreatic beta-cell function. Toxicol  Appl Pharmacol., 244: 77-83.

Silbergeld, E.K. (2003). Facilitative mechanisms of lead as  a carcinogen. Mutat. Res. Mol. Mech. Mutagen., 533: 121-133. 

Spencer, D.M., Bilardi, R.A., Koch, T.H., et al. (2008).  DNA repair in response to anthracycline-DNA adducts: A  role for both homologous recombination and nucleotide  excision repair. Mutat Res., 638: 110-121. 

Ustundag, A., Behm, C., Follmann, W., et al. (2014).  Protective effect of boric acid on lead- and cadmiuminduced genotoxicity in v79 cells. Arch Toxicol., 88:  1281-189.

Zhang, H., Wei, K., Zhang, M., et al. (2014). Assessing the  mechanism of DNA damage induced by lead through  direct and indirect interactions. J Photochem Photobiol  B., 136: 46-53.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing