AccScience Publishing / AJWEP / Volume 20 / Issue 5 / DOI: 10.3233/AJW230065
RESEARCH ARTICLE

Experimental Study and Process Optimisation for Fabrication of Circular Sheet Made from Waste PP/HDPE via Extrusion and Hydraulic Press

Ritu Chaudhary1 Sushant Upadhyaya1* Vikas Kumar Sangal1
Show Less
1 Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur – 302017, India
AJWEP 2023, 20(5), 49–63; https://doi.org/10.3233/AJW230065
Received: 28 July 2023 | Revised: 10 August 2023 | Accepted: 10 August 2023 | Published online: 10 August 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Plastic waste is a well-known hazard to the ecosystem due to which many countries are exploring ways to mitigate this polymer from the environment. Various plastic wastes are generated after end use in the form of plastic bottles, plastic bags, bottle caps, straw, plastic cups, etc. These are generally made up of HDPE, LPDE, PP, PET, PS, etc. Therefore, this study focusses to utilise this wastage to make some value-added products. In this context, waste plastic bottles and containers made up of polypropylene and high-density polyethylene were targeted and shredded into small pieces ranging from 1.4 to 2 mm and mixed with additives in the extruder and hydraulic press to make circular sheets that can be used for electrical purposes. During the study, the effect of various process parameters on fabricated circular sheet properties such as tensile strength, melt flow index (MFI), and thermal conductivity were investigated. The developed non-linear theoretical models were found to be in good agreement with the experimental data. The gradient descent method is applied in BBD for estimating the optimum condition for fabricating a circular sheet. Under optimum conditions, the tensile strength and thermal conductivity were found to be 1535 MPa and 0.0312 W/mK, respectively, for the HDPE circular sheet using extrusion. The tensile strength, MFI, and thermal conductivity were determined using a Universal testing machine, melt flow tester (ASTM D1238), and Thermal constant analyser based on ASTM D1350.

Keywords
Polypropylene
HDPE
marble slurry
HPMC
melt flow index
thermal conductivity.
References
  1. Achilias, D.S., Giannoulis, A. and G.Z. Papageorgiou (2009).  Recycling of polymers from plastic packaging materials  using the dissolution-reprecipitation technique. Polym.  Bull., 63(3): 449-465. doi:10.1007/s00289-009-0104-5
  2. Chaudhary, R., Upadhyaya, S. and V.K. Sangal (2021). A  parametric study on the HDPE/PP and marble slurry waste  utilisation using single screw extruder. Asian J. Water  Environ. Pollut., 18(4): 9-17. doi:10.3233/AJW210038
  3. Devasahayam, S., Bhaskar Raju, G. and C.M. Hussain  (2019). Utilization and recycling of end of life plastics  for sustainable and clean industrial processes including the  iron and steel industry. Mater. Sci. Energy Technol., 2(3): 634-646, doi:https://doi.org/10.1016/j.mset.2019.08.002,  2019.
  4. Liu, A., Ren, F., Lin, W.Y. and J.Y. Wang (2015). A review  of municipal solid waste environmental standards with  a focus on incinerator residues. Int. J. Sustain. Built  Environ., 4(2): 165-188. doi:10.1016/j.ijsbe.2015.11.002
  5. Peng, Y., Musah, M., Via, B. and X. Wang (2021). Calcium  carbonate particles filled homopolymer polypropylene  at different loading levels: Mechanical properties  characterization and materials failure analysis. J. Compos.  Sci., 5(11): 302, doi:10.3390/jcs5110302
  6. Rao, P.V.C.S., Kumarb, M.V. and A. Arunb (2019). Fabrication  and testing of Composite tile made from plastic waste and  mineral admixture for aggressive environments. Materials  Today: Proceedings, 15(1): 90-95.
  7. Saba, N., Paridah, M.T. and M. Jawaid (2015). Mechanical  properties of kenaf fibre reinforced polymer composite:  A review. Constr. Build. Mater., 76: 87-96. doi:10.1016/j. conbuildmat.2014.11.043
  8. Şimşek, B. and T. Uygunoǧlu (2016). Multi-response  optimization of polymer blended concrete: A TOPSIS  based Taguchi application. Constr. Build. Mater., 117: 251-262, doi:10.1016/j.conbuildmat.2016.05.027
  9. Singh, N., Hui, D., Singh, R., Ahuja, I.P.S., Feo, L. and F.  Fraternali (2017). Recycling of plastic solid waste: A state  of art review and future applications. Compos. Part B Eng.,  115: 409-422, doi:10.1016/j.compositesb.2016.09.013
  10. Singh, R., Singh, N., Fabbrocino, F., Fraternali, F. and I.P.S  Ahuja (2016). Waste management by recycling of polymers  with reinforcement of metal powder. Compos. Part B Eng.,  105: 23-29. doi:10.1016/j.compositesb.2016.08.029
  11. Soy, U., Findik, F., Yetgin, S.H., Gokkurt, T. and F. Yıldırım (2017). Fabrication and mechanical properties of glass fiber/ talc/CaCO3 filled recycled PP composites. Am. J. Appl.  Sci., 14(9): 878-885. doi:10.3844/ajassp.2017.878.885,  2017.
  12. Sutar, H., Sahoo, P.C., Sahu, P.S., Sahoo, S., Murmu, R.,  Swain, S. and S.C. Mishra (2018). Mechanical, thermal  and crystallization properties of polypropylene (PP)  reinforced composites with high density polyethylene  (HDPE) as matrix. Mater. Sci. Appl., 09(05): 502-515.  doi:10.4236/msa.2018.95035, 2018.
  13. Turku, I., Keskisaari, A., Kärki, T., Puurtinen, A. and  P. Marttila (2017). Characterization of wood plastic  composites manufactured from recycled plastic  blends. Compos. Struct., 161: 469-476. doi:10.1016/j. compstruct.2016.11.073
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing