AccScience Publishing / OR / Online First / DOI: 10.36922/OR025200017
REVIEW ARTICLE

Bone marrow microenvironment and organ chips: Advances in tumor dormancy research

Renshan Li1 Jiaqi Zhou2 Man Shu2 Guoqing Zhong2 Jin Ke1* Zhidao Xia3* Xiongfa Ji2*
Show Less
1 Department of Orthopaedics, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
2 Department of Orthopaedics Oncology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
3 Institute of Life Science, Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, United Kingdom
Received: 14 May 2025 | Revised: 19 August 2025 | Accepted: 22 August 2025 | Published online: 8 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bone metastasis presents a major challenge in oncology, often involving prolonged tumor dormancy within the complex bone marrow microenvironment (BMME). This dormancy, characterized by halted proliferation but sustained viability, poses risks for late recurrence and therapy resistance. Recent advancements in bone marrow-on-a-chip (BMOC) technology provide highly controllable, physiologically relevant biomimetic platforms to model the intricate cellular and molecular interactions governing BMME-regulated dormancy. This review focuses on BMOC-based approaches, examining their principles, distinct advantages, applications, and key findings in elucidating mechanisms of tumor dormancy regulation. Critically, it addresses current technical and biological limitations of BMOCs (e.g., replicating full immune component complexity) and propose concrete future directions for enhancing BMOC development and integration with complementary technologies. Enhanced understanding through refined BMOC technology could fundamentally uncover dormancy mechanisms and advance novel therapeutic strategies for metastatic control.

Graphical abstract
Keywords
Bone marrow microenvironment
Organ-on-a-chip
Microfluidics
Tumor dormancy
Organoid
Funding
We are grateful for the support from the Guangdong Basic and Applied Basic Research Foundation (2023A1515011544) and the National Science Foundation of China (32101097).
Conflict of interest
Zhidao Xia is an Associate Editor of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72(5):409-436. doi: 10.3322/caac.21731

 

  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834

 

  1. Coleman RE. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165-176. doi: 10.1053/ctrv.2000.0210

 

  1. Gomis RR, Gawrzak S. Tumor cell dormancy. Mol Oncol. 2017;11(1):62-78. doi: 10.1016/j.molonc.2016.09.009

 

  1. Cackowski FC, Heath EI. Prostate cancer dormancy and recurrence. Cancer Lett. 2022;524:103-108. doi: 10.1016/j.canlet.2021.09.037

 

  1. Hu W, Zhang L, Dong Y, Tian Z, Chen Y, Dong S. Tumour dormancy in inflammatory microenvironment: A promising therapeutic strategy for cancer-related bone metastasis. Cell Mol Life Sci. 2020;77(24):5149-5169. doi: 10.1007/s00018-020-03572-1

 

  1. Cekanova M, Rathore K. Animal models and therapeutic molecular targets of cancer: Utility and limitations. Drug Des Devel Ther. 2014;8:1911-1921. doi: 10.2147/DDDT.S49584

 

  1. Zushin PH, Mukherjee S, Wu JC. FDA modernization act 2.0: Transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J Clin Invest. 2023;133(21):eJCI175824. doi: 10.1172/JCI175824

 

  1. Santos Rosalem G, Gonzáles Torres LA, De Las Casas EB, Mathias FAS, Ruiz JC, Carvalho MGR. Microfluidics and organ-on-a-chip technologies: A systematic review of the methods used to mimic bone marrow. PLoS One. 2020;15(12):e0243840. doi: 10.1371/journal.pone.0243840

 

  1. Li W, Zhou Z, Zhou X, et al. 3D Biomimetic models to reconstitute tumor microenvironment in vitro: Spheroids, organoids, and tumor-on-a-chip. Adv Healthc Mater. 2023;12(18):e2202609. doi: 10.1002/adhm.202202609

 

  1. Tang Q, Li X, Lai C, et al. Fabrication of a hydroxyapatite- PDMS microfluidic chip for bone-related cell culture and drug screening. Bioact Mater. 2021;6(1):169-178. doi: 10.1016/j.bioactmat.2020.07.016

 

  1. Lipreri MV, Di Pompo G, Boanini E, et al. Bone on-a-chip: A 3D dendritic network in a screening platform for osteocyte-targeted drugs. Biofabrication. 2023;15(4):045012. doi: 10.1088/1758-5090/acee23

 

  1. Chen F, Han Y, Kang Y. Bone marrow niches in the regulation of bone metastasis. Br J Cancer. 2021;124(12):1912-1920. doi: 10.1038/s41416-021-01329-6

 

  1. Smith JT, Chai RC. Bone niches in the regulation of tumour cell dormancy. J Bone Oncol. 2024;47:100621. doi: 10.1016/j.jbo.2024.100621

 

  1. Yu-Lee L, Yu G, Lee YC, et al. Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFβRIII-p38MAPK-pS249/T252RB pathway. Cancer Res. 2018;78(11):2911-2924. doi: 10.1158/0008-5472.CAN-17-1051

 

  1. Frisbie L, Buckanovich RJ, Coffman L. Carcinoma-associated mesenchymal stem/stromal cells: Architects of the pro-tumorigenic tumor microenvironment. Stem Cells. 2022;40(8):705-715. doi: 10.1093/stmcls/sxac036

 

  1. Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol. 2021;14(1):195. doi: 10.1186/s13045-021-01208-w

 

  1. Khoo WH, Ledergor G, Weiner A, et al. A niche-dependent myeloid transcriptome signature defines dormant myeloma cells. Blood. 2019;134(1):30-43. doi: 10.1182/blood.2018880930

 

  1. Axelrod HD, Valkenburg KC, Amend SR, et al. AXL is a putative tumor suppressor and dormancy regulator in prostate cancer. Mol Cancer Res. 2019;17(2):356-369. doi: 10.1158/1541-7786.MCR-18-0718

 

  1. Taichman RS, Patel LR, Bedenis R, et al. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS One. 2013;8(4):e61873. doi: 10.1371/journal.pone.0061873

 

  1. Ono M, Kosaka N, Tominaga N, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014;7(332):ra63. doi: 10.1126/scisignal.2005231

 

  1. Lim PK, Bliss SA, Patel SA, et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 2011;71(5):1550-1560. doi: 10.1158/0008-5472.CAN-10-2372

 

  1. Bliss SA, Sinha G, Sandiford OA, et al. Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 2016;76(19):5832-5844. doi: 10.1158/0008-5472.CAN-16-1092

 

  1. Shangguan L, Li X, Wang Z, Luo Z. [Transforming growth factor-β1 induces bone marrow-derived mesenchymal stem cells to differentiate into cancer-associated fibroblasts]. Zhonghua Zhong Liu Za Zhi. 2015;37(11):804-809.

 

  1. Zhang W, Xu Z, Hao X, et al. Bone metastasis initiation is coupled with bone remodeling through osteogenic differentiation of NG2+ cells. Cancer Discov. 2023;13(2):474-495. doi: 10.1158/2159-8290.CD-22-0220

 

  1. Correia AL, Guimaraes JC, Auf DMP, et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature. 2021;594(7864):566-571. doi: 10.1038/s41586-021-03614-z

 

  1. Mehta AK, Kadel S, Townsend MG, Oliwa M, Guerriero JL. Macrophage biology and mechanisms of immune suppression in breast cancer. Front Immunol. 2021;12:643771. doi: 10.3389/fimmu.2021.643771

 

  1. Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest. 2015;125(9):3365-3376. doi: 10.1172/JCI80006

 

  1. Arellano DL, Juárez P, Verdugo-Meza A, et al. Bone microenvironment-suppressed T cells increase osteoclast formation and osteolytic bone metastases in mice. J Bone Miner Res. 2022;37(8):1446-1463. doi: 10.1002/jbmr.4615

 

  1. Barcellos-De-Souza P, Comito G, Pons-Segura C, et al. Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-β1. Stem Cells. 2016;34(10):2536-2547. doi: 10.1002/stem.2412

 

  1. Ferrer A, Roser CT, El-Far MH, et al. Hypoxia-mediated changes in bone marrow microenvironment in breast cancer dormancy. Cancer Lett. 2020;488:9-17. doi: 10.1016/j.canlet.2020.05.026

 

  1. Price TT, Burness ML, Sivan A, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016;8(340):340ra73. doi: 10.1126/scitranslmed.aad4059

 

  1. Braun S, Kentenich C, Janni W, et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol. 2000;18(1):80-86. doi: 10.1200/JCO.2000.18.1.80

 

  1. Eliasson P, Jönsson J. The hematopoietic stem cell niche: Low in oxygen but a nice place to be. J Cell Physiol. 2010;222(1):17-22. doi: 10.1002/jcp.21908

 

  1. Takubo K, Goda N, Yamada W, et al. Regulation of the HIF- 1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391-402. doi: 10.1016/j.stem.2010.06.020

 

  1. Vukovic M, Sepulveda C, Subramani C, et al. Adult hematopoietic stem cells lacking Hif-1α self-renew normally. Blood. 2016;127(23):2841-2846. doi: 10.1182/blood-2015-10-677138

 

  1. Zhang CC, Sadek HA. Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid Redox Signal. 2014;20(12):1891-1901. doi: 10.1089/ars.2012.5019

 

  1. Li J. Quiescence regulators for hematopoietic stem cell. Exp Hematol. 2011;39(5):511-520. doi: 10.1016/j.exphem.2011.01.008

 

  1. Liu H, Liu D, Ding G, Liao P, Zhang J. Hypoxia-inducible factor-1α and Wnt/β-catenin signaling pathways promote the invasion of hypoxic gastric cancer cells. Mol Med Rep. 2015;12(3):3365-3373. doi: 10.3892/mmr.2015.3812

 

  1. Villa JC, Chiu D, Brandes AH, et al. Nontranscriptional role of Hif-1α in activation of γ-secretase and notch signaling in breast cancer. Cell Rep. 2014;8(4):1077-1092. doi: 10.1016/j.celrep.2014.07.028

 

  1. Burger JA, Kipps TJ. CXCR4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107(5):1761-1767. doi: 10.1182/blood-2005-08-3182

 

  1. Engl T, Relja B, Marian D, et al. CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia. 2006;8(4):290-301. doi: 10.1593/neo.05694

 

  1. Sun Y, Fang M, Wang J, Cooper CR, Pienta KJ, Taichman RS. Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate. 2007;67(1):61-73. doi: 10.1002/pros.20500

 

  1. Chinni SR, Sivalogan S, Dong Z, et al. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: The role of bone microenvironment-associated CXCL12. Prostate. 2006;66(1):32-48. doi: 10.1002/pros.20318

 

  1. Cabioglu N, Summy J, Miller C, et al. CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res. 2005;65(15):6493-6497. doi: 10.1158/0008-5472.CAN-04-1303

 

  1. Liu S, Xie SM, Liu W, et al. Targeting CXCR4 abrogates resistance to trastuzumab by blocking cell cycle progression and synergizes with docetaxel in breast cancer treatment. Breast Cancer Res. 2023;25(1):62. doi: 10.1186/s13058-023-01665-w

 

  1. Prunier C, Baker D, Ten Dijke P, Ritsma L. TGF-β family signaling pathways in cellular dormancy. Trends Cancer. 2019;5(1):66-78. doi: 10.1016/j.trecan.2018.10.010

 

  1. Drabsch Y, Ten Dijke P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31(3-4):553-568. doi: 10.1007/s10555-012-9375-7

 

  1. Ghajar CM, Peinado H, Mori H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807-817. doi: 10.1038/ncb2767

 

  1. Lopes-Bastos B, Jin L, Ruge F, et al. Association of breast carcinoma growth with a non-canonical axis of IFNγ/IDO1/ TSP1. Oncotarget. 2017;8(49):85024-85039. doi: 10.18632/oncotarget.18781

 

  1. Aalinkeel R, Nair MPN, Sufrin G, et al. Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res. 2004;64(15):5311-5321. doi: 10.1158/0008-5472.CAN-2506-2

 

  1. Mao H, Zhao X, Sun S. NF-κB in inflammation and cancer. Cell Mol Immunol. 2025;22:811-839. doi: 10.1038/s41423-025-01310-w

 

  1. Xie Y, Liu F, Wu Y, et al. Inflammation in cancer: Therapeutic opportunities from new insights. Mol Cancer. 2025;24(1):51. doi: 10.1186/s12943-025-02243-8

 

  1. Haider M, Ridlmaier N, Smit DJ, Taipaleenmäki H. Interleukins as mediators of the tumor cell-bone cell crosstalk during the initiation of breast cancer bone metastasis. Int J Mol Sci. 2021;22(6):2898. doi: 10.3390/ijms22062898

 

  1. Edwards CM, Johnson RW. From good to bad: The opposing effects of PTHrP on tumor growth, dormancy, and metastasis throughout cancer progression. Front Oncol. 2021;11:644303. doi: 10.3389/fonc.2021.644303

 

  1. Patras L, Paul D, Matei IR. Weaving the nest: Extracellular matrix roles in pre-metastatic niche formation. Front Oncol. 2023;13:1163786. doi: 10.3389/fonc.2023.1163786

 

  1. Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20(3): 161-168. doi: 10.1016/j.semcancer.2010.05.002

 

  1. Sieber S, Wirth L, Cavak N, et al. Bone marrow-on-a-chip: Long‐term culture of human haematopoietic stem cells in a three‐dimensional microfluidic environment. J Tissue Eng Regen Med. 2018;12(2):479-489. doi: 10.1002/term.2507

 

  1. Kotha SS, Hayes BJ, Phong KT, et al. Engineering a multicellular vascular niche to model hematopoietic cell trafficking. Stem Cell Res Ther. 2018;9(1):77. doi: 10.1186/s13287-018-0808-2

 

  1. Marturano-Kruik A, Nava MM, Yeager K, et al. Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc Natl Acad Sci U S A. 2018;115(6):1256-1261. doi: 10.1073/pnas.1714282115

 

  1. Hao S, Ha L, Cheng G, et al. A spontaneous 3D bone-on-a-chip for bone metastasis study of breast cancer cells. Small. 2018;14(12):e1702787. doi: 10.1002/smll.201702787

 

  1. Aleman J, George SK, Herberg S, et al. Deconstructed microfluidic bone marrow on-a-chip to study normal and malignant hemopoietic cell-niche interactions. Small. 2019;15(43):e1902971. doi: 10.1002/smll.201902971

 

  1. Ma C, Witkowski MT, Harris J, et al. Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche. Sci Adv. 2020;6(44):eaba5536. doi: 10.1126/sciadv.aba5536

 

  1. Chou DB, Frismantas V, Milton Y, et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng. 2020;4(4):394-406. doi: 10.1038/s41551-019-0495-z

 

  1. Souquet B, Opitz M, Vianay B, Brunet S, Théry M. Manufacturing a bone marrow-on-a-chip using maskless photolithography. Methods Mol Biol. 2021;2308:263-278. doi: 10.1007/978-1-0716-1425-9_20

 

  1. Nelson MR, Ghoshal D, Mejías JC, Rubio DF, Keith E, Roy K. A multi-niche microvascularized human bone marrow (hBM) on-a-chip elucidates key roles of the endosteal niche in hBM physiology. Biomaterials. 2021;270:120683. doi: 10.1016/j.biomaterials.2021.120683

 

  1. Glaser DE, Curtis MB, Sariano PA, et al. Organ-on-a-chip model of vascularized human bone marrow niches. Biomaterials. 2022;280:121245. doi: 10.1016/j.biomaterials.2021.121245

 

  1. Sharipol A, Lesch ML, Soto CA, Frisch BJ. Bone marrow microenvironment-on-chip for culture of functional hematopoietic stem cells. Front Bioeng Biotechnol. 2022;10:855777. doi: 10.3389/fbioe.2022.855777

 

  1. Isosaari L, Vuorenpaa H, Yrjanainen A, et al. Simultaneous induction of vasculature and neuronal network formation on a chip reveals a dynamic interrelationship between cell types. Cell Commun Signal. 2023;21(1):132. doi: 10.1186/s12964-023-01159-4

 

  1. Ma C, Wang H, Liu L, et al. A Bioengineered Immunocompetent Human Leukemia Chip for Preclinical Screening of CAR T Cell Immunotherapy. Research Square [Preprint]; 2023. doi: 10.21203/rs.3.rs-2762929/v1

 

  1. Ji X, Bei HP, Zhong G, et al. Premetastatic niche mimicking bone-on-a-chip: A microfluidic platform to study bone metastasis in cancer patients. Small. 2023;19:e202207606. doi: 10.1002/smll.202207606

 

  1. Soleymani S, Naghib SM. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon. 2023;9(9):e19363. doi: 10.1016/j.heliyon.2023.e19363

 

  1. Fischetti T, Di Pompo G, Baldini N, Avnet S, Graziani G. 3D printing and bioprinting to model bone cancer: The role of materials and nanoscale cues in directing cell behavior. Cancers (Basel). 2021;13(16):4065. doi: 10.3390/cancers13164065

 

  1. Byun CK, Abi-Samra K, Cho YK, Takayama S. Pumps for microfluidic cell culture. Electrophoresis. 2014;35(2-3): 245-257. doi: 10.1002/elps.201300205

 

  1. Elorza RI, Sorrentino S, Moroni L. Parallels between the developing vascular and neural systems: Signaling pathways and future perspectives for regenerative medicine. Adv Sci (Weinh). 2021;8(23):e2101837. doi: 10.1002/advs.202101837

 

  1. Peguera B, Segarra M, Acker-Palmer A. Neurovascular crosstalk coordinates the central nervous system development. Curr Opin Neurobiol. 2021;69:202-213. doi: 10.1016/j.conb.2021.04.005

 

  1. Liang L, Wang X, Chen D, et al. Study on the hemodynamic effects of different pulsatile working modes of a rotary blood pump using a microfluidic platform that realizes in vitro cell culture effectively. Lab Chip. 2024;24(9):2428-2439. doi: 10.1039/d4lc00159a

 

  1. Chu P, Hsieh H, Chung P, et al. Development of vessel mimicking microfluidic device for studying mechano-response of endothelial cells. iScience. 2023;26(6):106927. doi: 10.1016/j.isci.2023.106927

 

  1. Salimi-Afjani N, Rieben R, Obrist D. Pulsatile-flow culture: A novel system for assessing vascular-cell dynamics. Lab Chip. 2025;25(7):1755-1766. doi: 10.1039/d4lc00949e

 

  1. Frisch BJ. The hematopoietic stem cell niche: What’s so special about bone? Bone. 2019;119:8-12. doi: 10.1016/j.bone.2018.05.017

 

  1. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760-772. doi: 10.1038/nbt.2989

 

  1. Duarte D, Hawkins ED, Lo CC. The interplay of leukemia cells and the bone marrow microenvironment. Blood. 2018;131(14):1507-1511. doi: 10.1182/blood-2017-12-784132

 

  1. Zheng Y, Sun Y, Yu X, et al. Angiogenesis in liquid tumors: An in vitro assay for leukemic-cell-induced bone marrow angiogenesis. Adv Healthc Mater. 2016;5(9):1014-1024. doi: 10.1002/adhm.201501007

 

 

  1. Mannino RG, Santiago-Miranda AN, Pradhan P, et al. 3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro. Lab Chip. 2017;17(3):407-414. doi: 10.1039/c6lc01204c

 

  1. Bruce A, Evans R, Mezan R, et al. Three-dimensional microfluidic tri-culture model of the bone marrow microenvironment for study of acute lymphoblastic leukemia. PLoS One. 2015;10(10):e0140506. doi: 10.1371/journal.pone.0140506

 

  1. Zhang W, Lee WY, Siegel DS, Tolias P, Zilberberg J. Patient-specific 3D microfluidic tissue model for multiple myeloma. Tissue Eng Part C Methods. 2014;20(8):663-670. doi: 10.1089/ten.TEC.2013.0490

 

  1. Samatov TR, Shkurnikov MU, Tonevitskaya SA, Tonevitsky AG. Modelling the metastatic cascade by in vitro microfluidic platforms. Prog Histochem Cytochem. 2015;49(4):21-29. doi: 10.1016/j.proghi.2015.01.001

 

  1. Mansoorifar A, Gordon R, Bergan RC, Bertassoni LE. Bone-on-a-chip: Microfluidic technologies and microphysiologic models of bone tissue. Adv Funct Mater. 2021;31(6):e2006796. doi: 10.1002/adfm.202006796

 

  1. Bischel LL, Casavant BP, Young PA, Eliceiri KW, Basu HS, Beebe DJ. A microfluidic coculture and multiphoton FAD analysis assay provides insight into the influence of the bone microenvironment on prostate cancer cells. Integr Biol (Camb). 2014;6(6):627-635. doi: 10.1039/c3ib40240a

 

  1. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A. 2012;109(34):13515-13520. doi: 10.1073/pnas.1210182109

 

  1. Mei X, Middleton K, Shim D, et al. Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integr Biol (Camb). 2019;11(4):119-129. doi: 10.1093/intbio/zyz008

 

  1. Jeon JS, Bersini S, Gilardi M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A. 2015;112(1):214-219. doi: 10.1073/pnas.1417115112

 

  1. Bersini S, Miermont A, Pavesi A, et al. A combined microfluidic-transcriptomic approach to characterize the extravasation potential of cancer cells. Oncotarget. 2018;9(90):36110-36125. doi: 10.18632/oncotarget.26306

 

  1. Bersini S, Jeon JS, Dubini G, et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials. 2014;35(8):2454-2461. doi: 10.1016/j.biomaterials.2013.11.050

 

  1. Ahn J, Lim J, Jusoh N, et al. 3D microfluidic bone tumor microenvironment comprised of hydroxyapatite/fibrin composite. Front Bioeng Biotechnol. 2019;7:168. doi: 10.3389/fbioe.2019.00168

 

  1. Yip RKH, Rimes JS, Capaldo BD, et al. Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nat Commun. 2021;12(1):6920. doi: 10.1038/s41467-021-26556-6

 

  1. Xu H, Jiao D, Liu A, Wu K. Tumor organoids: Applications in cancer modeling and potentials in precision medicine. J Hematol Oncol. 2022;15(1):58. doi: 10.1186/s13045-022-01278-4

 

  1. Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Front Cell Dev Biol. 2022;10:1043117. doi: 10.3389/fcell.2022.1043117

 

  1. Haque MR, Wessel CR, Leary DD, Wang C, Bhushan A, Bishehsari F. Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. Microsyst Nanoeng. 2022;8:36. doi: 10.1038/s41378-022-00370-6

 

  1. Du Y, Wang Y, Bao Q, et al. Personalized vascularized tumor organoid-on-a-chip for tumor metastasis and therapeutic targeting assessment. Adv Mater. 2025;37(6):e2412815. doi: 10.1002/adma.202412815

 

  1. Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269-273. doi: 10.1038/nature13034

 

  1. Wielockx B, Grinenko T, Mirtschink P, Chavakis T. Hypoxia pathway proteins in normal and malignant hematopoiesis. Cells. 2019;8(2):155. doi: 10.3390/cells8020155

 

  1. Houshmand M, Soleimani M, Atashi A, Saglio G, Abdollahi M, Nikougoftar Zarif M. Mimicking the acute myeloid leukemia niche for molecular study and drug screening. Tissue Eng Part C Methods. 2017;23(2):72-85. doi: 10.1089/ten.TEC.2016.0404

 

  1. Datta P, Dey M, Ataie Z, Unutmaz D, Ozbolat IT. 3D bioprinting for reconstituting the cancer microenvironment. NPJ Precis Oncol. 2020;4:18. doi: 10.1038/s41698-020-0121-2

 

  1. Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell. 2013;155(4):750-764. doi: 10.1016/j.cell.2013.10.029

 

  1. Borriello L, Coste A, Traub B, et al. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat Commun. 2022;13(1):626. doi: 10.1038/s41467-022-28076-3

 

  1. Sun W, Luo Z, Lee J, et al. Organ-on-a-chip for cancer and immune organs modeling. Adv Healthc Mater. 2019;8(4):e1801363. doi: 10.1002/adhm.201801363

 

  1. Chramiec A, Teles D, Yeager K, et al. Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab Chip. 2020;20(23):4357-4372. doi: 10.1039/d0lc00424c

 

  1. Picollet-D’Hahan N, Zuchowska A, Lemeunier I, Le Gac S. Multiorgan-on-a-chip: A systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 2021;39(8):788-810. doi: 10.1016/j.tibtech.2020.11.014
Share
Back to top
Organoid Research, Electronic ISSN: 3082-8503 Published by AccScience Publishing