Bridging molecular mechanisms and therapeutic innovations: The role of brain organoids in neurodevelopmental disorder research

This article examines the role of brain organoids in understanding neurodevelopmental disorders (NDDs), including autism spectrum disorder, intellectual disabilities, and schizophrenia, which arise from disruptions in the complex processes of brain development. The transformative potential of human pluripotent stem cell-derived brain organoids as models for investigating the molecular mechanisms underlying NDDs and their implications for therapeutic innovation is explored. By simulating critical stages of human brain development – such as neurulation, neurogenesis, and gliogenesis – organoids provide a physiologically relevant platform to investigate cellular diversity, synaptic connectivity, and neuronal circuit formation. Advanced methodologies, including single-cell RNA sequencing and chromatin accessibility profiling, are utilized to dissect lineage-specific gene expression patterns and regulatory mechanisms within organoids. In addition, metabolic profiling and functional assessments comprehensively evaluate neuronal maturation, synaptic plasticity, and cellular interactions, addressing the limitations of traditional two-dimensional cultures. This article also examines the influence of environmental factors, such as viral infections, by utilizing organoid models to simulate host-pathogen interactions and assess their impact on neural progenitor function and cortical development. The integration of machine learning and innovative culture systems, including microfluidic and vascularized models, enhances the physiological relevance and reproducibility of brain organoid research. This review highlights the potential use of organoids in elucidating the molecular pathology of NDDs and as platforms for drug discovery and personalized therapeutic screening, ultimately bridging molecular insights with therapeutic applications and underscoring the vital role of brain organoids in advancing the understanding of NDDs and facilitating the development of targeted interventions.
- Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The cellular and molecular landscapes of the developing human central nervous system. Neuron. 2016;89(2):248-268. doi: 10.1016/j.neuron.2015.12.008
- Xu N, LaGrow TJ, Anumba N, et al. Functional connectivity of the brain across rodents and humans. Front Neurosci. 2022;16:816331. doi: 10.3389/fnins.2022.816331
- Sun T, Hevner RF. Growth and folding of the mammalian cerebral cortex: From molecules to malformations. Nat Rev Neurosci. 2014;15(4):217-232. doi: 10.1038/nrn3707
- Penisson M, Ladewig J, Belvindrah R, Francis F. Genes and mechanisms involved in the generation and amplification of basal radial glial cells. Front Cell Neurosci. 2019;13:381. doi: 10.3389/fncel.2019.00381
- Zarzor MS, Blumcke I, Budday S. Exploring the role of the outer subventricular zone during cortical folding through a physics-based model. Elife. 2023;12:e82925. doi: 10.7554/eLife.82925
- Zhao X, Bhattacharyya A. Human models are needed for studying human neurodevelopmental disorders. Am J Hum Genet. 2018;103(6):829-857. doi: 10.1016/j.ajhg.2018.10.009
- Sandoval SO, Cappuccio G, Kruth K, et al. Rigor and reproducibility in human brain organoid research: Where we are and where we need to go. Stem Cell Reports. 2024;19(6):796-816. doi: 10.1016/j.stemcr.2024.04.008
- Adams JW, Cugola FR, Muotri AR. Brain organoids as tools for modeling human neurodevelopmental disorders. Physiology (Bethesda). 2019;34(5):365-375. doi: 10.1152/physiol.00005.2019
- Adlakha YK. Human 3D brain organoids: Steering the demolecularization of brain and neurological diseases. Cell Death Discov. 2023;9(1):221. doi: 10.1038/s41420-023-01523-w
- Lee CT, Bendriem RM, Wu WW, Shen RF. 3D brain Organoids derived from pluripotent stem cells: Promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci. 2017;24(1):59. doi: 10.1186/s12929-017-0362-8
- Dionne O, Sabatie S, Laurent B. Deciphering the physiopathology of neurodevelopmental disorders using brain organoids. Brain. 2025;148(1):12-26. doi: 10.1093/brain/awae281
- Eichmuller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol. 2022;18(11):661-680. doi: 10.1038/s41582-022-00723-9
- Damianidou E, Mouratidou L, Kyrousi C. Research models of neurodevelopmental disorders: The right model in the right place. Front Neurosci. 2022;16:1031075. doi: 10.3389/fnins.2022.1031075
- Chen H, Jin X, Li T, Ye Z. Brain organoids: Establishment and application. Front Cell Dev Biol. 2022;10:1029873. doi: 10.3389/fcell.2022.1029873
- Aili Y, Maimaitiming N, Wang Z, Wang Y. Brain organoids: A new tool for modelling of neurodevelopmental disorders. J Cell Mol Med. 2024;28(17):e18560. doi: 10.1111/jcmm.18560
- Fischer J, Heide M, Huttner WB. Genetic modification of brain organoids. Front Cell Neurosci. 2019;13:558. doi: 10.3389/fncel.2019.00558
- Passaro AP, Stice SL. Electrophysiological analysis of brain organoids: Current approaches and advancements. Front Neurosci. 2020;14:622137. doi: 10.3389/fnins.2020.622137
- Fiorenzano A, Sozzi E, Birtele M, et al. Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat Commun. 2021;12(1):7302. doi: 10.1038/s41467-021-27464-5
- Yang S, Hu H, Kung H, et al. Organoids: The current status and biomedical applications. MedComm (2020). 2023;4(3):e274. doi: 10.1002/mco2.274
- Colas JF, Schoenwolf GC. Towards a cellular and molecular understanding of neurulation. Dev Dyn. 2001;221(2):117-145. doi: 10.1002/dvdy.1144
- Guerout N, Li X, Barnabe-Heider F. Cell fate control in the developing central nervous system. Exp Cell Res. 2014;321(1):77-83. doi: 10.1016/j.yexcr.2013.10.003
- Miranda-Negron Y, Garcia-Arraras JE. Radial glia and radial glia-like cells: Their role in neurogenesis and regeneration. Front Neurosci. 2022;16:1006037. doi: 10.3389/fnins.2022.1006037
- Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron. 2022;110(7):1100-1115. doi: 10.1016/j.neuron.2022.01.034
- Tan X, Shi SH. Neocortical neurogenesis and neuronal migration. Wiley Interdiscip Rev Dev Biol. 2013;2(4):443-459. doi: 10.1002/wdev.88
- Toda T, Shinmyo Y, Dinh Duong TA, Masuda K, Kawasaki H. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals. Sci Rep. 2016;6:29578. doi: 10.1038/srep29578
- Pollen AA, Nowakowski TJ, Chen J, et al. Molecular identity of human outer radial glia during cortical development. Cell. 2015;163(1):55-67. doi: 10.1016/j.cell.2015.09.004
- Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. Handb Clin Neurol. 2020;173:25-42. doi: 10.1016/B978-0-444-64150-2.00004-6
- Petanjek Z, Banovac I, Sedmak D, Hladnik A. Dendritic spines: Synaptogenesis and synaptic pruning for the developmental organization of brain circuits. Adv Neurobiol. 2023;34:143-221. doi: 10.1007/978-3-031-36159-3_4
- Holst CB, Brochner CB, Vitting-Seerup K, Mollgard K. Astrogliogenesis in human fetal brain: Complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. J Anat. 2019;235(3):590-615. doi: 10.1111/joa.12948
- Fu Y, Yang M, Yu H, et al. Heterogeneity of glial progenitor cells during the neurogenesis-to-gliogenesis switch in the developing human cerebral cortex. Cell Rep. 2021;34(9):108788. doi: 10.1016/j.celrep.2021.108788
- Mullin AP, Gokhale A, Moreno-De-Luca A, Sanyal S, Waddington JL, Faundez V. Neurodevelopmental disorders: Mechanisms and boundary definitions from genomes, interactomes and proteomes. Transl Psychiatry. 2013;3(12):e329. doi: 10.1038/tp.2013.108
- Morris-Rosendahl DJ, Crocq MA. Neurodevelopmental disorders-the history and future of a diagnostic concept . Dialogues Clin Neurosci. 2020;22(1):65-72. doi: 10.31887/DCNS.2020.22.1/macrocq
- Silverman JL, Thurm A, Ethridge SB, et al. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. Genes Brain Behav. 2022;21(5):e12803. doi: 10.1111/gbb.12803
- Partridge B, Rossmeisl JH Jr. Companion animal models of neurological disease. J Neurosci Methods. 2020;331:108484. doi: 10.1016/j.jneumeth.2019.108484
- Andrews PW, Barbaric I, Benvenisty N, et al. The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell. 2022;29(12):1624-1636. doi: 10.1016/j.stem.2022.11.006
- Zhu Z, Huangfu D. Human pluripotent stem cells: An emerging model in developmental biology. Development. 2013;140(4):705-717. doi: 10.1242/dev.086165
- Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, et al. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer. 2023;22(1):189. doi: 10.1186/s12943-023-01873-0
- Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S. Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy. Biores Open Access. 2020;9(1):121-136. doi: 10.1089/biores.2019.0046
- Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications. Signal Transduct Target Ther. 2024;9(1):112. doi: 10.1038/s41392-024-01809-0
- Duval K, Grover H, Han LH, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 2017;32(4):266-277. doi: 10.1152/physiol.00036.2016
- Tang XY, Wu S, Wang D, et al. Human organoids in basic research and clinical applications. Signal Transduct Target Ther. 2022;7(1):168. doi: 10.1038/s41392-022-01024-9
- Qian X, Song H, Ming GL. Brain organoids: Advances, applications and challenges. Development. 2019;146(8):dev166074. doi: 10.1242/dev.166074
- Martinez-Cerdeno V, Noctor SC. Neural progenitor cell terminology. Front Neuroanat. 2018;12:104. doi: 10.3389/fnana.2018.00104
- Amin ND, Kelley KW, Kaganovsky K, et al. Generating human neural diversity with a multiplexed morphogen screen in organoids. Cell Stem Cell. 2024;31(12):1831-1846.e9. doi: 10.1016/j.stem.2024.10.016
- Zhao HH, Haddad G. Brain organoid protocols and limitations. Front Cell Neurosci. 2024;18:1351734. doi: 10.3389/fncel.2024.1351734
- Saglam-Metiner P, Devamoglu U, Filiz Y, et al. Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids. Commun Biol. 2023;6(1):173. doi: 10.1038/s42003-023-04547-1
- Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. doi: 10.3389/fmolb.2020.00033
- Marshall JJ, Mason JO. Mouse vs man: Organoid models of brain development & disease. Brain Res. 2019;1724:146427. doi: 10.1016/j.brainres.2019.146427
- Agboola OS, Hu X, Shan Z, Wu Y, Lei L. Brain organoid: A 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro. Stem Cell Res Ther. 2021;12(1):430. doi: 10.1186/s13287-021-02369-8
- Pagliaro A, Artegiani B, Hendriks D. Emerging approaches to enhance human brain organoid physiology. Trends Cell Biol. 2025;1-17. doi: 10.1016/j.tcb.2024.12.001
- Kim J, Koo BK, Knoblich JA. Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571-584. doi: 10.1038/s41580-020-0259-3
- Kim SH, Chang MY. Application of human brain organoids-opportunities and challenges in modeling human brain development and neurodevelopmental diseases. Int J Mol Sci. 2023;24(15):30. doi: 10.3390/ijms241512528
- Li C, Fleck JS, Martins-Costa C, et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature. 2023;621(7978):373-380. doi: 10.1038/s41586-023-06473-y
- Sun N, Meng X, Liu Y, Song D, Jiang C, Cai J. Applications of brain organoids in neurodevelopment and neurological diseases. J Biomed Sci. 2021;28(1):30. doi: 10.1186/s12929-021-00728-4
- Jusop AS, Thanaskody K, Tye GJ, Dass SA, Wan Kamarul Zaman WS, Nordin F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: A glance through. Front Mol Neurosci. 2023;16:1173433. doi: 10.3389/fnmol.2023.1173433
- Xu J, Wen Z. Brain organoids: Studying human brain development and diseases in a dish. Stem Cells Int. 2021;2021:5902824. doi: 10.1155/2021/5902824
- Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329-2340. doi: 10.1038/nprot.2014.158
- Ji XS, Ji XL, Xiong M, Zhou WH. Modeling congenital brain malformations with brain organoids: A narrative review. Transl Pediatr. 2023;12(1):68-78. doi: 10.21037/tp-22-239
- Glass MR, Waxman EA, Yamashita S, et al. Cross-site reproducibility of human cortical organoids reveals consistent cell type composition and architecture. Stem Cell Reports. 2024;19(9):1351-1367. doi: 10.1016/j.stemcr.2024.07.008
- Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2:94. doi: 10.1038/s43586-022-00174-y
- Bertacchi M, Maharaux G, Loubat A, Jung M, Studer M. FGF8-mediated gene regulation affects regional identity in human cerebral organoids. Elife. 2024;13:e98096. doi: 10.7554/eLife.98096
- Jang H, Kim SH, Koh Y, Yoon KJ. Engineering brain organoids: Toward mature neural circuitry with an intact cytoarchitecture. Int J Stem Cells. 2022;15(1):41-59. doi: 10.15283/ijsc22004
- Kim J, Sullivan GJ, Park IH. How well do brain organoids capture your brain? iScience. 2021;24(2):102063. doi: 10.1016/j.isci.2021.102063
- Morrison G, Liu C, Wing C, Delaney SM, Zhang W, Dolan ME. Evaluation of inter-batch differences in stem-cell derived neurons. Stem Cell Res. 2016;16(1):140-148. doi: 10.1016/j.scr.2015.12.025
- Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol. 2021;142:477-530. doi: 10.1016/bs.ctdb.2020.12.011
- He Z, Dony L, Fleck JS, et al. An integrated transcriptomic cell atlas of human neural organoids. Nature. 2024;635(8039):690-698. doi: 10.1038/s41586-024-08172-8
- Kilpatrick S, Irwin C, Singh KK. Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Transl Psychiatry. 2023;13(1):217. doi: 10.1038/s41398-023-02510-6
- Chhibber T, Bagchi S, Lahooti B, et al. CNS organoids: An innovative tool for neurological disease modeling and drug neurotoxicity screening. Drug Discov Today. 2020;25(2):456-465. doi: 10.1016/j.drudis.2019.11.010
- Ozkan A, Padmanabhan HK, Shipman SL, et al. Directed differentiation of functional corticospinal-like neurons from endogenous SOX6+/NG2+ cortical progenitors. bioRxiv. 2024:590488. doi: 10.1101/2024.04.21.590488
- Castiglione H, Vigneron PA, Baquerre C, Yates F, Rontard J, Honegger T. Human brain organoids-on-chip: Advances, challenges, and perspectives for preclinical applications. Pharmaceutics. 2022;14(11):2301. doi: 10.3390/pharmaceutics14112301
- McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: Using principles of developmental biology to grow human tissues in a dish. Development. 2017;144(6):958-962. doi: 10.1242/dev.140731
- Fujimori K, Matsumoto T, Kisa F, Hattori N, Okano H, Akamatsu W. Escape from Pluripotency via Inhibition of TGF-beta/BMP and activation of wnt signaling accelerates differentiation and aging in hPSC progeny cells. Stem Cell Reports. 2017;9(5):1675-1691. doi: 10.1016/j.stemcr.2017.09.024
- Manzari-Tavakoli A, Babajani A, Farjoo MH, Hajinasrollah M, Bahrami S, Niknejad H. The cross-talks among bone morphogenetic protein (BMP) signaling and other prominent pathways involved in neural differentiation. Front Mol Neurosci. 2022;15:827275. doi: 10.3389/fnmol.2022.827275
- Cai J, Schleidt S, Pelta-Heller J, Hutchings D, Cannarsa G, Iacovitti L. BMP and TGF-beta pathway mediators are critical upstream regulators of Wnt signaling during midbrain dopamine differentiation in human pluripotent stem cells. Dev Biol. 2013;376(1):62-73. doi: 10.1016/j.ydbio.2013.01.012
- Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008;3(5):519-532. doi: 10.1016/j.stem.2008.09.002
- Kadoshima T, Sakaguchi H, Nakano T, et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci U S A. 2013;110(50):20284-20289. doi: 10.1073/pnas.1315710110
- Sloan SA, Andersen J, Pasca AM, Birey F, Pasca SP. Generation and assembly of human brain region-specific three-dimensional cultures. Nat Protoc. 2018;13(9):2062-2085. doi: 10.1038/s41596-018-0032-7
- Tamada A, Muguruma K. Recapitulation and investigation of human brain development with neural organoids. IBRO Neurosci Rep. 2024;16:106-117. doi: 10.1016/j.ibneur.2023.12.006
- Del Dosso A, Urenda JP, Nguyen T, Quadrato G. Upgrading the physiological relevance of human brain organoids. Neuron. 2020;107(6):1014-1028. doi: 10.1016/j.neuron.2020.08.029
- Susaimanickam PJ, Kiral FR, Park IH. Region specific brain organoids to study neurodevelopmental disorders. Int J Stem Cells. 2022;15(1):26-40. doi: 10.15283/ijsc22006
- Yakoub AM. Cerebral organoids exhibit mature neurons and astrocytes and recapitulate electrophysiological activity of the human brain. Neural Regen Res. 2019;14(5):757-761. doi: 10.4103/1673-5374.249283
- Park S, Min CH, Choi E, et al. Long-term tracking of neural and oligodendroglial development in large-scale human cerebral organoids by noninvasive volumetric imaging. Sci Rep. 2025;15(1):2536. doi: 10.1038/s41598-025-85455-8
- Marton RM, Miura Y, Sloan SA, et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci. Mar 2019;22(3):484-491. doi: 10.1038/s41593-018-0316-9
- Al-Mhanawi B, Marti MB, Morrison SD, et al. Protocol for generating embedding-free brain organoids enriched with oligodendrocytes. STAR Protoc. 2023;4(4):102725. doi: 10.1016/j.xpro.2023.102725
- Shim G, Romero-Morales AI, Sripathy SR, Maher BJ. Utilizing hiPSC-derived oligodendrocytes to study myelin pathophysiology in neuropsychiatric and neurodegenerative disorders. Front Cell Neurosci. 2023;17:1322813. doi: 10.3389/fncel.2023.1322813
- Mehl LC, Manjally AV, Bouadi O, Gibson EM, Tay TL. Microglia in brain development and regeneration. Development. 2022;149(8):dev200425. doi: 10.1242/dev.200425
- Zhang W, Jiang J, Xu Z, et al. Microglia-containing human brain organoids for the study of brain development and pathology. Mol Psychiatry. 2023;28(1):96-107. doi: 10.1038/s41380-022-01892-1
- Ma C, Seong H, Li X, Yu X, Xu S, Li Y. Human brain organoid: A versatile tool for modeling neurodegeneration diseases and for drug screening. Stem Cells Int. 2022;2022:2150680. doi: 10.1155/2022/2150680
- Ranzoni AM, Tangherloni A, Berest I, et al. Integrative single-cell RNA-Seq and ATAC-Seq analysis of human developmental hematopoiesis. Cell Stem Cell. 2021;28(3):472-487.e7. doi: 10.1016/j.stem.2020.11.015
- Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis. 2024;199:106550. doi: 10.1016/j.nbd.2024.106550
- Tang F, Lao K, Surani MA. Development and applications of single-cell transcriptome analysis. Nat Methods. 2011;8(4 Suppl):S6-S11. doi: 10.1038/nmeth.1557
- Satam H, Joshi K, Mangrolia U, et al. Next-generation sequencing technology: Current trends and advancements. Biology (Basel). 2023;12(7):997. doi: 10.3390/biology12070997
- Pavon N, Diep K, Yang F, et al. Patterning ganglionic eminences in developing human brain organoids using a morphogen-gradient-inducing device. Cell Rep Methods. 2024;4(1):100689. doi: 10.1016/j.crmeth.2023.100689
- Trujillo CA, Gao R, Negraes PD, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 2019;25(4):558-569.e7. doi: 10.1016/j.stem.2019.08.002
- Quadrato G, Nguyen T, Macosko EZ, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545(7652):48-53. doi: 10.1038/nature22047
- Kiaee K, Jodat YA, Bassous NJ, Matharu N, Shin SR. Transcriptomic mapping of neural diversity, differentiation and functional trajectory in iPSC-derived 3D brain organoid models. Cells. 2021;10(12):3422. doi: 10.3390/cells10123422
- Ilieva MS. Non-Coding RNAs in neurological and neuropsychiatric disorders: Unraveling the hidden players in disease pathogenesis. Cells. 2024;13(12):1063. doi: 10.3390/cells13121063
- Andrews MG, Kriegstein AR. Challenges of organoid research. Annu Rev Neurosci. 2022;45:23-39. doi: 10.1146/annurev-neuro-111020-090812
- Anaparthy N, Ho YJ, Martelotto L, Hammell M, Hicks J. Single-cell applications of next-generation sequencing. Cold Spring Harb Perspect Med. 2019;9(10):a026898. doi: 10.1101/cshperspect.a026898
- Lu J, Sheng Y, Qian W, Pan M, Zhao X, Ge Q. scRNA-seq data analysis method to improve analysis performance. IET Nanobiotechnol. 2023;17(3):246-256. doi: 10.1049/nbt2.12115
- Guo L, Li C, Gong W. Toward reproducible tumor organoid culture: Focusing on primary liver cancer. Front Immunol. 2024;15:1290504. doi: 10.3389/fimmu.2024.1290504
- Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell. 2022;185(15):2756-2769. doi: 10.1016/j.cell.2022.06.051
- Piwecka M, Rajewsky N, Rybak-Wolf A. Single-cell and spatial transcriptomics: Deciphering brain complexity in health and disease. Nat Rev Neurol. 2023;19(6):346-362. doi: 10.1038/s41582-023-00809-y
- Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14(8):479-492. doi: 10.1038/s41581-018-0021-7
- Fang S, Chen B, Zhang Y, et al. Computational approaches and challenges in spatial transcriptomics. Genomics Proteomics Bioinformatics. 2023;21(1):24-47. doi: 10.1016/j.gpb.2022.10.001
- Lahnemann D, Koster J, Szczurek E, et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020;21(1):31. doi: 10.1186/s13059-020-1926-6
- Flores JE, Claborne DM, Weller ZD, Webb-Robertson BM, Waters KM, Bramer LM. Missing data in multi-omics integration: Recent advances through artificial intelligence. Front Artif Intell. 2023;6:1098308. doi: 10.3389/frai.2023.1098308
- Luo Y, Zhao C, Chen F. Multiomics research: Principles and challenges in integrated analysis. Biodes Res. 2024;6:0059. doi: 10.34133/bdr.0059
- He C, Kalafut NC, Sandoval SO, et al. BOMA, a machine-learning framework for comparative gene expression analysis across brains and organoids. Cell Rep Methods. 2023;3(2):100409. doi: 10.1016/j.crmeth.2023.100409
- Grandi FC, Modi H, Kampman L, Corces MR. Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 2022;17(6):1518-1552. doi: 10.1038/s41596-022-00692-9
- Saelens W, Pushkarev O, Deplancke B. ChromatinHD connects single-cell DNA accessibility and conformation to gene expression through scale-adaptive machine learning. Nat Commun. 2025;16(1):317. doi: 10.1038/s41467-024-55447-9
- Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19(9):609-633. doi: 10.1038/s41573-020-0072-x
- Clemente-Suarez VJ, Beltran-Velasco AI, Redondo-Florez L, Martin-Rodriguez A, Yanez-Sepulveda R, Tornero-Aguilera JF. Neuro-vulnerability in energy metabolism regulation: A comprehensive narrative review. Nutrients. 2023;15(14):3106. doi: 10.3390/nu15143106
- Song Y, Lu S, Gao F, Wei T, Ma W. The application of organoid models in research into metabolic diseases. Diabetes Obes Metab. 2024;26(3):809-819. doi: 10.1111/dom.15390
- Hendriks D, Artegiani B, Margaritis T, Zoutendijk I, Chuva de Sousa Lopes S, Clevers H. Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth. Nat Commun. 2024;15(1):4034. doi: 10.1038/s41467-024-48550-4
- Kimura M, Iguchi T, Iwasawa K, et al. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. Cell. 2022;185(22):4216-4232.e16. doi: 10.1016/j.cell.2022.09.031
- Min X, Zhao Y, Yu M, et al. Spatially resolved metabolomics: From metabolite mapping to function visualising. Clin Transl Med. 2024;14(11):e70031. doi: 10.1002/ctm2.70031
- Lin A, Sved Skottvoll F, Rayner S, et al. 3D cell culture models and organ-on-a-chip: Meet separation science and mass spectrometry. Electrophoresis. 2020;41(1-2):56-64. doi: 10.1002/elps.201900170
- Okkelman IA, Neto N, Papkovsky DB, Monaghan MG, Dmitriev RI. A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses. Redox Biol. 2020;30:101420. doi: 10.1016/j.redox.2019.101420
- Barroso M, Monaghan MG, Niesner R, Dmitriev RI. Probing organoid metabolism using fluorescence lifetime imaging microscopy (FLIM): The next frontier of drug discovery and disease understanding. Adv Drug Deliv Rev. 2023;201:115081. doi: 10.1016/j.addr.2023.115081
- Yoo I, Ahn I, Lee J, Lee N. Extracellular flux assay (Seahorse assay): Diverse applications in metabolic research across biological disciplines. Mol Cells. 2024;47(8):100095. doi: 10.1016/j.mocell.2024.100095
- Little AC, Kovalenko I, Goo LE, et al. High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun Biol. 2020;3(1):271. doi: 10.1038/s42003-020-0988-z
- Choi NW, Verbridge SS, Williams RM, et al. Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo. Biomaterials. 2012;33(9):2710-2722. doi: 10.1016/j.biomaterials.2011.11.048
- Debruyne AC, Okkelman IA, Heymans N, et al. Live microscopy of multicellular spheroids with the multimodal near-infrared nanoparticles reveals differences in oxygenation gradients. ACS Nano. 2024;18(19):12168-12186. doi: 10.1021/acsnano.3c12539
- Wang R, Yin Y, Li J, et al. Global stable-isotope tracing metabolomics reveals system-wide metabolic alternations in aging Drosophila. Nat Commun. 2022;13(1):3518. doi: 10.1038/s41467-022-31268-6
- Allen DK, Young JD. Tracing metabolic flux through time and space with isotope labeling experiments. Curr Opin Biotechnol. 2020;64:92-100. doi: 10.1016/j.copbio.2019.11.003
- Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing. Cell. 2018;173(4):822-837. doi: 10.1016/j.cell.2018.03.055
- Legnini I, Emmenegger L, Zappulo A, et al. Spatiotemporal, optogenetic control of gene expression in organoids. Nat Methods. 2023;20(10):1544-1552. doi: 10.1038/s41592-023-01986-w
- Shiri Z, Simorgh S, Naderi S, Baharvand H. Optogenetics in the era of cerebral organoids. Trends Biotechnol. 2019;37(12):1282-1294. doi: 10.1016/j.tibtech.2019.05.009
- Danzi F, Pacchiana R, Mafficini A, et al. To metabolomics and beyond: A technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther. 2023;8(1):137. doi: 10.1038/s41392-023-01380-0
- Glibetic N, Bowman S, Skaggs T, Weichhaus M. The use of patient-derived organoids in the study of molecular metabolic adaptation in breast cancer. Int J Mol Sci. 2024;25(19):10503. doi: 10.3390/ijms251910503
- Cappuccio G, Khalil SM, Osenberg S, Li F, Maletic- Savatic M. Mass spectrometry imaging as an emerging tool for studying metabolism in human brain organoids. Front Mol Biosci. 2023;10:1181965. doi: 10.3389/fmolb.2023.1181965
- McMurtrey RJ. Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids. Tissue Eng Part C Methods. 2016;22(3):221-249. doi: 10.1089/ten.TEC.2015.0375
- Hautefort I, Poletti M, Papp D, Korcsmaros T. Everything you always wanted to know about organoid-based models (and never dared to ask). Cell Mol Gastroenterol Hepatol. 2022;14(2):311-331. doi: 10.1016/j.jcmgh.2022.04.012
- Cho AN, Jin Y, An Y, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12(1):4730. doi: 10.1038/s41467-021-24775-5
- Gonzalez P, Lozano P, Ros G, Solano F. Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci. 2023;24(11):9352. doi: 10.3390/ijms24119352
- Murphy SE, Sweedler JV. Metabolomics-based mass spectrometry methods to analyze the chemical content of 3D organoid models. Analyst. 2022;147(13):2918-2929. doi: 10.1039/d2an00599a
- Wang H, Brown PC, Chow ECY, et al. 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci. 2021;14(5):1659-1680. doi: 10.1111/cts.13066
- Sharick JT, Walsh CM, Sprackling CM, et al. Metabolic heterogeneity in patient tumor-derived organoids by primary site and drug treatment. Front Oncol. 2020;10:553. doi: 10.3389/fonc.2020.00553
- de Lemos L, Antas P, Ferreira IS, et al. Modelling neurodegeneration and inflammation in early diabetic retinopathy using 3D human retinal organoids. In Vitro Model. 2024;3(1):33-48. doi: 10.1007/s44164-024-00068-1
- Zhang S, Liu L, Li X, et al. Transcriptomic and proteomic sequencing unveils the role of vitamin D and metabolic flux shifts in the induction of human hepatic organoids. Stem Cell Res Ther. 2024;15(1):478. doi: 10.1186/s13287-024-04101-8
- Tasnim K, Liu J. Emerging bioelectronics for brain organoid electrophysiology. J Mol Biol. 2022;434(3):167165. doi: 10.1016/j.jmb.2021.167165
- Ciarpella F, Zamfir RG, Campanelli A, et al. Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity. iScience. 2021;24(12):103438. doi: 10.1016/j.isci.2021.103438
- Mulder LA, Depla JA, Sridhar A, Wolthers K, Pajkrt D, Vieira de Sa R. A beginner’s guide on the use of brain organoids for neuroscientists: A systematic review. Stem Cell Res Ther. 2023;14(1):87. doi: 10.1186/s13287-023-03302-x
- Albanese A, Swaney JM, Yun DH, et al. Multiscale 3D phenotyping of human cerebral organoids. Sci Rep. 2020;10(1):21487. doi: 10.1038/s41598-020-78130-7
- Qian X, Su Y, Adam CD, et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell. 2020;26(5):766-781.e9. doi: 10.1016/j.stem.2020.02.002
- Gabriel E, Albanna W, Pasquini G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell. 2021;28(10):1740-1757.e8. doi: 10.1016/j.stem.2021.07.010
- Eigenhuis KN, Somsen HB, van der Kroeg M, et al. A simplified protocol for the generation of cortical brain organoids. Front Cell Neurosci. 2023;17:1114420. doi: 10.3389/fncel.2023.1114420
- Zafeiriou MP, Bao G, Hudson J, et al. Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids. Nat Commun. 2020;11(1):3791. doi: 10.1038/s41467-020-17521-w
- Huang Q, Tang B, Romero JC, et al. Shell microelectrode arrays (MEAs) for brain organoids. Sci Adv. 2022;8(33):eabq5031. doi: 10.1126/sciadv.abq5031
- Lam D, Fischer NO, Enright HA. Probing function in 3D neuronal cultures: A survey of 3D multielectrode array advances. Curr Opin Pharmacol. 2021;60:255-260. doi: 10.1016/j.coph.2021.08.003
- Shin H, Jeong S, Lee JH, Sun W, Choi N, Cho IJ. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat Commun. 2021;12(1):492. doi: 10.1038/s41467-020-20763-3
- Leao RN, Reis A, Emirandetti A, Lewicka M, Hermanson O, Fisahn A. A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures. PLoS One. 2010;5(11):e13833. doi: 10.1371/journal.pone.0013833
- Aseyev N, Ivanova V, Balaban P, Nikitin E. Current practice in using voltage imaging to record fast neuronal activity: Successful examples from invertebrate to mammalian studies. Biosensors (Basel). 2023;13(6):648. doi: 10.3390/bios13060648
- Panzera LC, Hoppa MB. Genetically encoded voltage indicators are illuminating subcellular physiology of the axon. Front Cell Neurosci. 2019;13:52. doi: 10.3389/fncel.2019.00052
- Xu Y, Zou P, Cohen AE. Voltage imaging with genetically encoded indicators. Curr Opin Chem Biol. 2017;39:1-10. doi: 10.1016/j.cbpa.2017.04.005
- Fei K, Zhang J, Yuan J, Xiao P. Present application and perspectives of organoid imaging technology. Bioengineering (Basel). 2022;9(3):121. doi: 10.3390/bioengineering9030121
- Serafini CE, Charles S, Casteleiro Costa P, et al. Non-invasive label-free imaging analysis pipeline for in situ characterization of 3D brain organoids. Sci Rep. 2024;14(1):22331. doi: 10.1038/s41598-024-72038-2
- de Medeiros G, Ortiz R, Strnad P, et al. Multiscale light-sheet organoid imaging framework. Nat Commun. 2022;13(1):4864. doi: 10.1038/s41467-022-32465-z
- Liu W, Kim GR, Takayama S, Jia S. Fourier light-field imaging of human organoids with a hybrid point-spread function. Biosens Bioelectron. 2022;208:114201. doi: 10.1016/j.bios.2022.114201
- Gu L, Cai H, Chen L, Gu M, Tchieu J, Guo F. Functional neural networks in human brain organoids. BME Front. 2024;5:0065. doi: 10.34133/bmef.0065
- Grienberger C, Giovannucci A, Zeiger W, Portera-Cailliau C. Two-photon calcium imaging of neuronal activity. Nat Rev Methods Primers. 2022;2(1):67. doi: 10.1038/s43586-022-00147-1
- Yip MC, Gonzalez MM, Lewallen CF, et al. Patch-walking, a coordinated multi-pipette patch clamp for efficiently finding synaptic connections. Elife. 2024;13:RP97399. doi: 10.7554/eLife.97399
- van den Hurk M, Erwin JA, Yeo GW, Gage FH, Bardy C. Patch-Seq protocol to analyze the electrophysiology, morphology and transcriptome of whole single neurons derived from human pluripotent stem cells. Front Mol Neurosci. 2018;11:261. doi: 10.3389/fnmol.2018.00261
- Zhang Y, Rozsa M, Liang Y, et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature. 2023;615(7954):884-891. doi: 10.1038/s41586-023-05828-9
- Sakamoto M, Yokoyama T. Probing neuronal activity with genetically encoded calcium and voltage fluorescent indicators. Neurosci Res. 2024;215:56-63. doi: 10.1016/j.neures.2024.06.004
- Yang HH, St-Pierre F. Genetically encoded voltage indicators: Opportunities and challenges. J Neurosci. 2016;36(39):9977-9989. doi: 10.1523/JNEUROSCI.1095-16.2016
- Fiala T, Wang J, Dunn M, et al. Chemical targeting of voltage sensitive dyes to specific cells and molecules in the brain. J Am Chem Soc. 2020;142(20):9285-9301. doi: 10.1021/jacs.0c00861
- Mutoh H, Mishina Y, Gallero-Salas Y, Knopfel T. Comparative performance of a genetically-encoded voltage indicator and a blue voltage sensitive dye for large scale cortical voltage imaging. Front Cell Neurosci. 2015;9:147. doi: 10.3389/fncel.2015.00147
- Beck C, Zhang D, Gong Y. Enhanced genetically encoded voltage indicators advance their applications in neuroscience. Curr Opin Biomed Eng. 2019;12:111-117. doi: 10.1016/j.cobme.2019.10.010
- Yoo J, Kwak H, Kwon J, et al. Long-term intracellular recording of optogenetically-induced electrical activities using vertical nanowire multi electrode array. Sci Rep. 2020;10(1):4279. doi: 10.1038/s41598-020-61325-3
- Quintanilla CA, Fitzgerald Z, Kashow O, et al. High-density multielectrode arrays bring cellular resolution to neuronal activity and network analyses of corticospinal motor neurons. Sci Rep. 2025;15(1):732. doi: 10.1038/s41598-024-83883-6
- Kiepas A, Voorand E, Mubaid F, Siegel PM, Brown CM. Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J Cell Sci. 2020;133(4):jcs242834. doi: 10.1242/jcs.242834
- Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N. Multiphoton fluorescence microscopy for in vivo imaging. Cell. 2024;187(17):4458-4487. doi: 10.1016/j.cell.2024.07.036
- Magni M, Bossi B, Conforti P, et al. Brain regional identity and cell type specificity landscape of human cortical organoid models. Int J Mol Sci. 2022;23(21):13159. doi: 10.3390/ijms232113159
- Ortega JA, Memi F, Radonjic N, et al. The subventricular zone: A key player in human neocortical development. Neuroscientist. 2018;24(2):156-170. doi: 10.1177/1073858417691009
- Marcy G, Foucault L, Babina E, et al. Single-cell analysis of the postnatal dorsal V-SVZ reveals a role for Bmpr1a signaling in silencing pallial germinal activity. Sci Adv. 2023;9(18):eabq7553. doi: 10.1126/sciadv.abq7553
- Merz K, Lie DC. Evidence that Doublecortin is dispensable for the development of adult born neurons in mice. PLoS One. 2013;8(5):e62693. doi: 10.1371/journal.pone.0062693
- Varga BV, Faiz M, Pivonkova H, et al. Signal requirement for cortical potential of transplantable human neuroepithelial stem cells. Nat Commun. 2022;13(1):2844. doi: 10.1038/s41467-022-29839-8
- Tidball AM, Niu W, Ma Q, et al. Deriving early single-rosette brain organoids from human pluripotent stem cells. Stem Cell Reports. 2023;18(12):2498-2514. doi: 10.1016/j.stemcr.2023.10.020
- Demirtas M, Burt JB, Helmer M, et al. Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics. Neuron. 2019;101(6):1181-1194.e13. doi: 10.1016/j.neuron.2019.01.017
- Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 2007;8(6):427-437. doi: 10.1038/nrn2151
- Michalovicz LT, Kelly KA, Vashishtha S, et al. Astrocyte-specific transcriptome analysis using the ALDH1L1 bacTRAP mouse reveals novel biomarkers of astrogliosis in response to neurotoxicity. J Neurochem. 2019;150(4):420-440. doi: 10.1111/jnc.14800
- Kalafatakis I, Karagogeos D. Oligodendrocytes and microglia: Key players in myelin development, damage and repair. Biomolecules. 2021;11(7):1058. doi: 10.3390/biom11071058
- Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development. 2013;140(6):1364-1368. doi: 10.1242/dev.091844
- Hama H, Hioki H, Namiki K, et al. ScaleS: An optical clearing palette for biological imaging. Nat Neurosci. 2015;18(10):1518-29. doi: 10.1038/nn.4107
- Ke MT, Nakai Y, Fujimoto S, et al. Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep. 2016;14(11):2718-2732. doi: 10.1016/j.celrep.2016.02.057
- Yu T, Zhu J, Li Y, et al. RTF: A rapid and versatile tissue optical clearing method. Sci Rep. 2018;8(1):1964. doi: 10.1038/s41598-018-20306-3
- Gomez-Gaviro MV, Sanderson D, Ripoll J, Desco M. Biomedical applications of tissue clearing and three-dimensional imaging in health and disease. iScience. 2020;23(8):101432. doi: 10.1016/j.isci.2020.101432
- Grist SM, Nasseri SS, Poon T, Roskelley C, Cheung KC. On-chip clearing of arrays of 3-D cell cultures and micro-tissues. Biomicrofluidics. 2016;10(4):044107. doi: 10.1063/1.4959031
- Costantini I, Cicchi R, Silvestri L, Vanzi F, Pavone FS. In-vivo and ex-vivo optical clearing methods for biological tissues: Review. Biomed Opt Express. 2019;10(10):5251-5267. doi: 10.1364/BOE.10.005251
- Koh I, Hagiwara M. Gradient to sectioning CUBE workflow for the generation and imaging of organoids with localized differentiation. Commun Biol. 2023;6(1):299. doi: 10.1038/s42003-023-04694-5
- Yang B, Treweek JB, Kulkarni RP, et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 2014;158(4):945-958. doi: 10.1016/j.cell.2014.07.017
- Frolikova M, Blazikova M, Capek M, et al. Innovative sample preparation using alcohol dehydration and high refractive index medium enables acquisition of two-channel super-resolution 3D STED image of an entire oocyte. J Microsc. 2025;297(2):165-178. doi: 10.1111/jmi.13363
- Renier N, Adams EL, Kirst C, et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell. 2016;165(7):1789-1802. doi: 10.1016/j.cell.2016.05.007
- Pavlova IP, Shipley SC, Lanio M, Hen R, Denny CA. Optimization of immunolabeling and clearing techniques for indelibly labeled memory traces. Hippocampus. 2018;28(7):523-535. doi: 10.1002/hipo.22951
- Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier- Lavigne M. iDISCO: A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159(4):896-910. doi: 10.1016/j.cell.2014.10.010
- Erturk A, Becker K, Jahrling N, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 2012;7(11):1983-1995. doi: 10.1038/nprot.2012.119
- Cauzzo S, Bruno E, Boulet D, et al. A modular framework for multi-scale tissue imaging and neuronal segmentation. Nat Commun. 2024;15(1):4102. doi: 10.1038/s41467-024-48146-y
- Kim D, Lim H, Youn J, Park TE, Kim DS. Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane. Nat Commun. 2024;15(1):9420. doi: 10.1038/s41467-024-53073-z
- Nwokoye PN, Abilez OJ. Bioengineering methods for vascularizing organoids. Cell Rep Methods. 2024;4(6):100779. doi: 10.1016/j.crmeth.2024.100779
- Simoes-Abade MBC, Patterer M, Nicaise AM, Pluchino S. Brain organoid methodologies to explore mechanisms of disease in progressive multiple sclerosis. Front Cell Neurosci. 2024;18:1488691. doi: 10.3389/fncel.2024.1488691
- Mrza MA, He J, Wang Y. Integration of iPSC-derived microglia into brain organoids for neurological research. Int J Mol Sci. 2024;25(6):3148. doi: 10.3390/ijms25063148
- Hyun I, Scharf-Deering JC, Lunshof JE. Ethical issues related to brain organoid research. Brain Res. 2020;1732:146653. doi: 10.1016/j.brainres.2020.146653
- Lavazza A, Reichlin M. Human brain organoids: Why there can be moral concerns if they grow up in the lab and are transplanted or destroyed. Camb Q Healthc Ethics. 2023;32(4):1-15. doi: 10.1017/S096318012300021X
- Mollaki V. Ethical challenges in organoid use. BioTech (Basel). 2021;10(3):12. doi: 10.3390/biotech10030012
- de Jongh D, Massey EK, VANGUARD Consortium, Bunnik EM. Organoids: A systematic review of ethical issues. Stem Cell Res Ther. 2022;13(1):337. doi: 10.1186/s13287-022-02950-9
- Jun Y, Lee J, Choi S, et al. In vivo-mimicking microfluidic perfusion culture of pancreatic islet spheroids. Sci Adv. 2019;5(11):eaax4520. doi: 10.1126/sciadv.aax4520
- Ye S, Marsee A, van Tienderen GS, et al. Accelerated production of human epithelial organoids in a miniaturized spinning bioreactor. Cell Rep Methods. 2024;4(11):100903. doi: 10.1016/j.crmeth.2024.100903
- Licata JP, Schwab KH, Har-El YE, Gerstenhaber JA, Lelkes PI. Bioreactor technologies for enhanced organoid culture. Int J Mol Sci. 2023;24(14):11427. doi: 10.3390/ijms241411427
- Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater. 2023;19:50-74. doi: 10.1016/j.bioactmat.2022.03.039
- Misra S, Moro CF, Del Chiaro M, et al. Ex vivo organotypic culture system of precision-cut slices of human pancreatic ductal adenocarcinoma. Sci Rep. 2019;9(1):2133. doi: 10.1038/s41598-019-38603-w
- Quintard C, Tubbs E, Jonsson G, et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun. 2024;15(1):1452. doi: 10.1038/s41467-024-45710-4
- Schuster B, Junkin M, Kashaf SS, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat Commun. 2020;11(1):5271. doi:10.1038/s41467-020-19058-4
- Tischler J, Swank Z, Hsiung HA, Vianello S, Lutolf MP, Maerkl SJ. An automated do-it-yourself system for dynamic stem cell and organoid culture in standard multi-well plates. Cell Rep Methods. 2022;2(7):100244. doi: 10.1016/j.crmeth.2022.100244
- Zhang S, Wan Z, Kamm RD. Vascularized organoids on a chip: Strategies for engineering organoids with functional vasculature. Lab Chip. 2021;21(3):473-488. doi: 10.1039/d0lc01186j
- Werschler N, Quintard C, Nguyen S, Penninger J. Engineering next generation vascularized organoids. Atherosclerosis. 2024;398:118529. doi: 10.1016/j.atherosclerosis.2024.118529
- Naderi-Meshkin H, Cornelius VA, Eleftheriadou M, Potel KN, Setyaningsih WAW, Margariti A. Vascular organoids: Unveiling advantages, applications, challenges, and disease modelling strategies. Stem Cell Res Ther. 2023;14(1):292. doi: 10.1186/s13287-023-03521-2
- Zhao X, Xu Z, Xiao L, et al. Review on the vascularization of organoids and organoids-on-a-chip. Front Bioeng Biotechnol. 2021;9:637048. doi: 10.3389/fbioe.2021.637048
- Hughes DL, Hughes A, Soonawalla Z, Mukherjee S, O’Neill E. Dynamic physiological culture of ex vivo human tissue: A systematic review. Cancers (Basel). 2021;13(12):2870. doi: 10.3390/cancers13122870
- Pasca AM, Sloan SA, Clarke LE, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12(7):671-678. doi: 10.1038/nmeth.3415
- Humpel C. Organotypic brain slice cultures: A review. Neuroscience. 2015;305:86-98. doi: 10.1016/j.neuroscience.2015.07.086
- Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22(4):669-679. doi: 10.1038/s41593-019-0350-2
- Gu Z, Matsuura K, Letelier A, et al. Axon fasciculation, mediated by transmembrane semaphorins, is critical for the establishment of segmental specificity of corticospinal circuits. J Neurosci. 2023;43(32):5753-5768. doi: 10.1523/JNEUROSCI.0073-22.2023
- Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: A manual to survive. Front Cell Neurosci. 2024;18:1419526. doi: 10.3389/fncel.2024.1419526
- Li XJ, Valadez AV, Zuo P, Nie Z. Microfluidic 3D cell culture: Potential application for tissue-based bioassays. Bioanalysis. 2012;4(12):1509-1525. doi: 10.4155/bio.12.133
- Kim JE, Lee JM, Chung BG. Microwell arrays for uniform-sized embryoid body-mediated endothelial cell differentiation. Biomed Microdevices. 2014;16(4):559-566. doi: 10.1007/s10544-014-9858-0
- Karimi M, Bahrami S, Mirshekari H, et al. Microfluidic systems for stem cell-based neural tissue engineering. Lab Chip. 2016;16(14):2551-2571. doi: 10.1039/c6lc00489j
- Werner EM, Lam BX, Hui EE. Phase-optimized peristaltic pumping by integrated microfluidic logic. Micromachines (Basel). 2022;13(10):1784. doi: 10.3390/mi13101784
- Jovic TH, Zhao F, Jia H, Doak SH, Whitaker IS. Orbital shaking conditions augment human nasoseptal cartilage formation in 3D culture. Front Bioeng Biotechnol. 2024;12:1360089. doi: 10.3389/fbioe.2024.1360089
- Pischiutta F, Cavaleiro H, Caruso E, et al. A novel organotypic cortical slice culture model for traumatic brain injury: Molecular changes induced by injury and mesenchymal stromal cell secretome treatment. Front Cell Neurosci. 2023;17:1217987. doi: 10.3389/fncel.2023.1217987
- Rizzuti M, Melzi V, Brambilla L, et al. Shaping the neurovascular unit exploiting human brain organoids. Mol Neurobiol. 2024;61(9):6642-6657. doi: 10.1007/s12035-024-03998-9
- Taoufik E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: An overview of induced pluripotent stem-cell-based disease models. Open Biol. 2018;8(9):180138. doi: 10.1098/rsob.180138
- Mariani J, Coppola G, Zhang P, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162(2):375-390. doi: 10.1016/j.cell.2015.06.034
- Magdalon J, Sanchez-Sanchez SM, Griesi-Oliveira K, Sertie AL. Dysfunctional mTORC1 signaling: A convergent mechanism between syndromic and nonsyndromic forms of autism spectrum disorder? Int J Mol Sci. 2017;18(3):659. doi: 10.3390/ijms18030659
- Urresti J, Zhang P, Moran-Losada P, et al. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry. 2021;26(12):7560-7580. doi: 10.1038/s41380-021-01243-6
- Chan WK, Griffiths R, Price DJ, Mason JO. Cerebral organoids as tools to identify the developmental roots of autism. Mol Autism. 2020;11(1):58. doi: 10.1186/s13229-020-00360-3
- Santos JLS, Araujo CA, Rocha CAG, Costa-Ferro ZSM, Souza BSF. Modeling autism spectrum disorders with induced pluripotent stem cell-derived brain organoids. Biomolecules. 2023;13(2):260. doi: 10.3390/biom13020260
- Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545(7652):54-59. doi: 10.1038/nature22330
- Pasca SP, Portmann T, Voineagu I, et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med. 2011;17(12):1657-1662. doi: 10.1038/nm.2576
- Birey F, Li MY, Gordon A, et al. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell. 2022;29(2):248-264.e7. doi: 10.1016/j.stem.2021.11.011
- Xu R, Brawner AT, Li S, et al. OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome. Cell Stem Cell. 2019;24(6):908-926.e8. doi: 10.1016/j.stem.2019.04.014
- Liu W, Zhou H, Liu L, et al. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region. Neurobiol Dis. 2015;77:106-116. doi: 10.1016/j.nbd.2015.02.021
- Chen C, Jiang P, Xue H, et al. Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat Commun. 2014;5:4430. doi: 10.1038/ncomms5430
- Szu J, Wojcinski A, Jiang P, Kesari S. Impact of the olig family on neurodevelopmental disorders. Front Neurosci. 2021;15:659601. doi: 10.3389/fnins.2021.659601
- Notaras M, Lodhi A, Dundar F, et al. Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psychiatry. 2022;27(3):1416-1434. doi: 10.1038/s41380-021-01316-6
- Notaras M, Lodhi A, Fang H, Greening D, Colak D. The proteomic architecture of schizophrenia iPSC-derived cerebral organoids reveals alterations in GWAS and neuronal development factors. Transl Psychiatry. 2021;11(1):541. doi: 10.1038/s41398-021-01664-5
- Stachowiak EK, Benson CA, Narla ST, et al. Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of FGFR1. Transl Psychiatry. 2017;7(11):6. doi: 10.1038/s41398-017-0054-x
- Fink JJ, Robinson TM, Germain ND, et al. Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells. Nat Commun. 2017;8:15038. doi: 10.1038/ncomms15038
- Camoes Dos Santos J, Appleton C, Cazaux Mateus F, Covas R, Bekman EP, da Rocha ST. Stem cell models of Angelman syndrome. Front Cell Dev Biol. 2023;11:1274040. doi: 10.3389/fcell.2023.1274040
- Sen D, Voulgaropoulos A, Drobna Z, Keung AJ. Human cerebral organoids reveal early spatiotemporal dynamics and pharmacological responses of UBE3A. Stem Cell Reports. 2020;15(4):845-854. doi: 10.1016/j.stemcr.2020.08.006
- Zang Z, Yin H, Du Z, et al. Valproic acid exposure decreases neurogenic potential of outer radial glia in human brain organoids. Front Mol Neurosci. 2022;15:1023765. doi: 10.3389/fnmol.2022.1023765
- Park G, Jang WE, Kim S, et al. Dysregulation of the Wnt/ beta-catenin signaling pathway via Rnf146 upregulation in a VPA-induced mouse model of autism spectrum disorder. Exp Mol Med. 2023;55(8):1783-1794. doi: 10.1038/s12276-023-01065-2
- Osaki T, Delepine C, Osako Y, et al. Early differential impact of MeCP2 mutations on functional networks in Rett syndrome patient-derived human cerebral organoids. bioRxiv. 2024. doi: 10.1101/2024.08.10.607464
- Haase FD, Coorey B, Riley L, Cantrill LC, Tam PPL, Gold WA. Pre-clinical investigation of rett syndrome using human stem cell-based disease models. Front Neurosci. 2021;15:698812. doi: 10.3389/fnins.2021.698812
- Stoppel DC, McCamphill PK, Senter RK, Heynen AJ, Bear MF. mGluR5 negative modulators for fragile X: Treatment resistance and persistence. Front Psychiatry. 2021;12:718953. doi: 10.3389/fpsyt.2021.718953
- Brasic JR, Goodman JA, Nandi A, et al. Fragile X mental retardation protein and cerebral expression of metabotropic glutamate receptor subtype 5 in men with fragile X syndrome: A pilot study. Brain Sci. 2022;12(3):314. doi: 10.3390/brainsci12030314
- Volpato V, Webber C. Addressing variability in iPSC-derived models of human disease: Guidelines to promote reproducibility. Dis Model Mech. 2020;13(1):dmm042317. doi: 10.1242/dmm.042317
- Smirnov A, Melino G, Candi E. Gene expression in organoids: An expanding horizon. Biol Direct. 2023;18(1):11. doi: 10.1186/s13062-023-00360-2
- Usman OH, Zhang L, Xie G, et al. Genomic heterogeneity in pancreatic cancer organoids and its stability with culture. NPJ Genom Med. 2022;7(1):71. doi: 10.1038/s41525-022-00342-9
- Zhou C, Wu Y, Wang Z, et al. Standardization of organoid culture in cancer research. Cancer Med. 2023;12(13):14375-14386. doi: 10.1002/cam4.5943
- Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22(5):456-472. doi: 10.1177/1087057117696795
- Hartung T, Morales Pantoja IE, Smirnova L. Brain organoids and organoid intelligence from ethical, legal, and social points of view. Front Artif Intell. 2023;6:1307613. doi: 10.3389/frai.2023.1307613
- Yong HEJ, Chan SY, Chakraborty A, et al. Significance of the placental barrier in antenatal viral infections. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166244. doi: 10.1016/j.bbadis.2021.166244
- Shimizu Y, Sakata-Haga H, Saikawa Y, Hatta T. Influence of immune system abnormalities caused by maternal immune activation in the postnatal period. Cells. 2023;12(5):741. doi: 10.3390/cells12050741
- Chia SPS, Kong SLY, Pang JKS, Soh BS. 3D human organoids: The next “viral” model for the molecular basis of infectious diseases. Biomedicines. 2022;10(7):1541. doi: 10.3390/biomedicines10071541
- Crawford G, Soper O, Kang E, Berg DA. Advancing insights into virus-induced neurodevelopmental disorders through human brain organoid modelling. Expert Rev Mol Med. 2024;27:e1. doi: 10.1017/erm.2024.35
- Patel N, Chaudhari K, Patel DJ, Joshi JS, Jyotsna G. TORCH (toxoplasmosis, other, rubella, Cytomegalovirus, herpes simplex virus) Infection and the enigma of anomalous fetal development: Pregnancy puzzles. Cureus. 2024;16(1):e51534. doi: 10.7759/cureus.51534
- Lucignani G, Guarnera A, Rossi-Espagnet MC, et al. From fetal to neonatal neuroimaging in TORCH infections: A pictorial review. Children (Basel). 2022;9(8):1210. doi: 10.3390/children9081210
- Jash S, Sharma S. Pathogenic infections during pregnancy and the consequences for fetal brain development. Pathogens. 2022;11(2):193. doi: 10.3390/pathogens11020193
- Mottahedin A, Ardalan M, Chumak T, Riebe I, Ek J, Mallard C. Effect of neuroinflammation on synaptic organization and function in the developing brain: Implications for neurodevelopmental and neurodegenerative disorders. Front Cell Neurosci. 2017;11:190. doi: 10.3389/fncel.2017.00190
- Kim J, Erice C, Rohlwink UK, Tucker EW. Infections in the developing brain: The role of the neuro-immune axis. Front Neurol. 2022;13:805786. doi: 10.3389/fneur.2022.805786
- Shinjyo N, Hikosaka K, Kido Y, Yoshida H, Norose K. Toxoplasma infection induces sustained up-regulation of complement factor B and C5a receptor in the mouse brain via microglial activation: Implication for the alternative complement pathway activation and anaphylatoxin signaling in cerebral toxoplasmosis. Front Immunol. 2020;11:603924. doi: 10.3389/fimmu.2020.603924
- Mawson AR, Croft AM. Rubella virus infection, the congenital rubella syndrome, and the link to autism. Int J Environ Res Public Health. 2019;16(19):3543. doi: 10.3390/ijerph16193543
- Qian X, Nguyen HN, Jacob F, Song H, Ming GL. Using brain organoids to understand Zika virus-induced microcephaly. Development. 2017;144(6):952-957. doi: 10.1242/dev.140707
- Sison SL, O’Brien BS, Johnson AJ, Seminary ER, Terhune SS, Ebert AD. Human Cytomegalovirus disruption of calcium signaling in neural progenitor cells and organoids. J Virol. 2019;93(17):e00954-19. doi: 10.1128/JVI.00954-19
- Rybak-Wolf A, Wyler E, Pentimalli TM, et al. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids. Nat Microbiol. 2023;8(7):1252-1266. doi: 10.1038/s41564-023-01405-y
- Khong WX, Yan B, Yeo H, et al. A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol. 2012;86(4):2121-1231. doi: 10.1128/JVI.06103-11
- van der Sanden SMG, Sachs N, Koekkoek SM, et al. Enterovirus 71 infection of human airway organoids reveals VP1-145 as a viral infectivity determinant. Emerg Microbes Infect. 2018;7(1):84. doi: 10.1038/s41426-018-0077-2
- Schultz EM, Jones TJ, Xu S, Dean DD, Zechmann B, Barr KL. Cerebral organoids derived from a Parkinson’s patient exhibit unique pathogenesis from chikungunya virus infection when compared to a non-Parkinson’s patient. Pathogens. 2021;10(7):913. doi: 10.3390/pathogens10070913
- Fulton CDM, Beasley DWC, Bente DA, Dineley KT. Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav Immun Health. 2020;7:100105. doi: 10.1016/j.bbih.2020.100105
- Hosseini S, Wilk E, Michaelsen-Preusse K, et al. Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function. J Neurosci. 2018;38(12):3060-3080. doi: 10.1523/JNEUROSCI.1740-17.2018
- Han Y, Yang L, Lacko LA, Chen S. Human organoid models to study SARS-CoV-2 infection. Nat Methods. 2022;19(4):418-428. doi: 10.1038/s41592-022-01453-y
- Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human neural stem cell systems to explore pathogen-related neurodevelopmental and neurodegenerative disorders. Cells. 2020;9(8):1893. doi: 10.3390/cells9081893
- Ihunwo AO, Perego J, Martino G, Vicenzi E, Panina- Bordignon P. Neurogenesis and viral infection. Front Immunol. 2022;13:826091. doi: 10.3389/fimmu.2022.826091
- Trevisan M, Pianezzola A, Onorati M, et al. Human neural progenitor cell models to study the antiviral effects and neuroprotective potential of approved and investigational human cytomegalovirus inhibitors. Antiviral Res. 2024;223:105816. doi: 10.1016/j.antiviral.2024.105816
- Mihalas AB, Elsen GE, Bedogni F, et al. Intermediate progenitor cohorts differentially generate cortical layers and require Tbr2 for timely acquisition of neuronal subtype identity. Cell Rep. 2016;16(1):92-105. doi: 10.1016/j.celrep.2016.05.072
- Atluri VS, Hidalgo M, Samikkannu T, Kurapati KR, Nair M. Synaptic plasticity and neurological disorders in neurotropic viral infections. Neural Plast. 2015;2015:138979. doi: 10.1155/2015/138979
- Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate immune signaling and role of glial cells in herpes simplex virus- and rabies virus-induced encephalitis. Viruses. 2021;13(12):2364. doi: 10.3390/v13122364
- Borst K, Dumas AA, Prinz M. Microglia: Immune and non-immune functions. Immunity. 2021;54(10):2194-2208. doi: 10.1016/j.immuni.2021.09.014
- Yang S, Graham J, Kahn JW, Schwartz EA, Gerritsen ME. Functional roles for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am J Pathol. 1999;155(3):887-895. doi: 10.1016/S0002-9440(10)65188-7
- Tisoncik-Go J, Stokes C, Whitmore LS, et al. Disruption of myelin structure and oligodendrocyte maturation in a macaque model of congenital Zika infection. Nat Commun. 2024;15(1):5173. doi: 10.1038/s41467-024-49524-2
- Louie AY, Kim JS, Drnevich J, et al. Influenza A virus infection disrupts oligodendrocyte homeostasis and alters the myelin lipidome in the adult mouse. J Neuroinflammation. 2023;20(1):190. doi: 10.1186/s12974-023-02862-2
- Xie S, Li F. Ependymal cells: Roles in central nervous system infections and therapeutic application. J Neuroinflammation. 2024;21(1):255. doi: 10.1186/s12974-024-03240-2