Application of cancer organoids: The forefront of personalized oncology and preclinical testing

Cancer remains one of the most pressing medical problems in the world. Recent years have seen a gradual rise in utilization of “organoids,” a novel in vitro three-dimensional culture technology, in cancer research. Organoids are multicellular structures derived from human stem cells, and cancer organoids can replicate the characteristics, morphology, and functionality of the original tumor in the human body. At present, organoid technology has been widely used in various oncologic contexts, including colorectal, liver, lung, pancreatic, and breast cancers, providing considerable assistance in patient-specific drug testing, precision medicine, and the development of personalized medical strategies. Therefore, this preclinical model contributes to significantly accelerating the translation from basic cancer research to clinical therapeutics. This review discusses the preparation of cancer organoids and their recent progress in multiple cancer research fields. Finally, the challenges of organoid technology in current clinical practice and future development prospects are discussed.
- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229-263. doi: 10.3322/caac.21834
- Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:2-49. doi: 10.3322/caac.21820
- Miserocchi G, Mercatali L, Liverani C, et al. Management and potentialities of primary cancer cultures in preclinical and translational studies. J Transl Med. 2017;15:229. doi: 10.1186/s12967-017-1328-z
- Hait WN. Anticancer drug development: The grand challenges. Nat Rev Drug Discov. 2010;9:253-254. doi: 10.1038/nrd3144
- MKapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci. 2016;14:910. doi: 10.5114/aoms.2016.63743
- Cheon DJ, Orsulic S. Mouse models of cancer. Annu Rev Pathol. 2011;6:95-119. doi: 10.1146/annurev.pathol.3.121806.154244
- Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: Technologies and applications. Signal Transduct Target Ther. 2023;8(1):160. doi: 10.1038/s41392-023-01419-2
- Kamb A. What’s wrong with our cancer models? Nat Rev Drug Discov. 2005;4:161-165. doi: 10.1038/nrd1635
- Caponigro G, Sellers WR. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov. 2011;10:179-187. doi: 10.1038/nrd3385
- Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18(7):407-418. doi: 10.1038/s41568-018-0007-6
- Ben-David U, Siranosian G, Ha H, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018;560:325-330. doi: 10.1038/s41586-018-0409-3
- Jin J, Yoshimura K, Sewastjanow-Silva M, Song S, Ajani JA. Challenges and prospects of patient-derived xenografts for cancer research. Cancers (Basel). 2023;15:4352. doi: 10.3390/cancers15174352.
- Zanella ER, Grassi E, Trusolino L. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol. 2022;19:719-732. doi: 10.1038/s41571-022-00682-6
- Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017;49:1567-1575. doi: 10.1038/ng.3967
- Xu H, Jiao D, Liu A, Wu K. Tumor organoids: Applications in cancer modeling and potentials in precision medicine. J Hematol Oncol. 2022;15(1):58. doi: 10.1186/s13045-022-01278-4
- Xu R, Zhou X, Wang S, Trinkle C. Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol Ther. 2020;218:107668. doi: 10.1016/j.pharmthera.2020.107668
- Xu H, Lyu X, Yi M, Zhao W, Song Y, Wu K. Organoid technology and applications in cancer research. J Hematol Oncol. 2018;11:116. doi: 10.1186/s13045-018-0662-9
- Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis. 2023;11:614. doi: 10.1016/j.gendis.2023.02.052
- Yan HHN, Chan AS, Lai FPL, Leung SY. Organoid cultures for cancer modeling. Cell Stem Cell. 2023;30:917-937. doi: 10.1016/j.stem.2023.05.012
- Yuan J, Li X, Yu S. Cancer organoid co-culture model system: Novel approach to guide precision medicine. Front Immunol. 2023;13:1061388. doi: 10.3389/fimmu.2022.1061388
- Tong L, Cui W, Zhang B, et al. Patient-derived organoids in precision cancer medicine. Med. 2024;11:1351-1377. doi: 10.1016/j.medj.2024.08.010
- Wallaschek N, Niklas C, Pompaiah M, et al. Establishing pure cancer organoid cultures: Identification, selection and verification of cancer phenotypes and genotypes. J Mol Biol. 2019;431:2884-2893. doi: 10.1016/j.jmb.2019.05.031
- Veninga V, Voest EE. Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell. 2021;39:1190-1201. doi: 10.1016/j.ccell.2021.07.020
- Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med. 2020;26(4):566-576. doi: 10.1038/s41591-020-0805-8
- Ribas A, Lawrence D, Atkinson V, et al. Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nat Med. 2019;25(6):936-940. doi: 10.1038/s41591-019-0476-5
- Han K, Pierce SE, Li A, et al. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature. 2020;580:136-141. doi: 10.1038/s41586-020-2099-x
- Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New insights into the cancer-microbiome-immune axis: Decrypting a decade of discoveries. Front Immunol. 2021;12:622064. doi: 10.3389/fimmu.2021.622064
- Ji DB, Wu AW. Organoid in colorectal cancer: Progress and challenges. Chin Med J (Engl). 2020;133:1971. doi: 10.1097/CM9.0000000000000882
- Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9 - mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256-262. doi: 10.1038/nm.3802
- Ooft SN, Weeber F, Dijkstra KK, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11:eaay2574. doi: 10.1126/scitranslmed.aay2574
- Luo X, Fong ELS, Zhu C, et al. Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater. 2021;132:461-472. doi: 10.1016/j.actbio.2020.12.037
- Cao LQ, Xie Y, Fleishman JS, Liu X, Chen ZS. Hepatocellular carcinoma and lipid metabolism: Novel targets and therapeutic strategies. Cancer Lett. 2024;597:217061. doi: 10.1016/j.canlet.2024.217061
- Broutier L, Mastrogiovanni G, Verstegen MMA, et al. Human primary liver cancer -derived organoid cultures for disease modelling and drug screening. Nat Med. 2017;23:1424. doi: 10.1038/nm.4438
- Ji S, Feng L, Fu Z, et al. Pharmaco-proteogenomic characterization of liver cancer organoids for precision oncology. Sci Transl Med. 2023;15:eadg3358. doi: 10.1126/scitranslmed.adg3358
- Qiu R, Murata S, Cheng C, et al. A novel orthotopic liver cancer model for creating a human-like tumor microenvironment. Cancers (Basel). 2021;13:3997. doi: 10.3390/cancers13163997/s1
- Farhangnia P, Khorramdelazad H, Nickho H, Delbandi A.A. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol. 2024;17:40. doi: 10.1186/s13045-024-01561-6
- Duan X, Zhang L, Feng N, et al. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell. 2023;31:1. doi: 10.1016/j.stem.2023.11.011
- Zhou Z, Van der Jeught K, Li Y, et al. A T cell‐engaging tumor organoid platform for pancreatic cancer immunotherapy. Adv Sci. 2023;10:2300548. doi: 10.1002/advs.202300548
- Grossman JE, Muthuswamy L, Huang L, et al. Organoid sensitivity correlates with therapeutic response in patients with pancreatic cancer. Clin Cancer Res. 2022;28:708. doi: 10.1158/1078-0432.ccr-20-4116
- Cao LQ, Sun H, Xie Y, et al. Therapeutic evolution in HR+/ HER2- breast cancer: From targeted therapy to endocrine therapy. Front Pharmacol. 2024;15:1340764. doi: 10.3389/fphar.2024.1340764
- Wu H, Wang W, Zhang Y, et al. Establishment of patient-derived organoids for guiding personalized therapies in breast cancer patients. Int J Cancer. 2024;155:324-338. doi: 10.1002/ijc.34931
- Mazzucchelli S, Signati L, Messa L, et al. Breast cancer patient-derived organoids for the investigation of patient-specific tumour evolution. Cancer Cell Int. 2024;24:220. doi: 10.1186/s12935-024-03375-5
- Dijkstra KK, Monkhorst K, Schipper LJ, et al. Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine. Cell Rep. 2020;31:107588. doi: 10.1016/j.celrep.2020.107588
- Dost AFM, Moye AL, Vedaie M, et al. Organoids model transcriptional hallmarks of oncogenic KRAS activation in lung epithelial progenitor cells. Cell Stem Cell. 2020;27: 663-678.e8. doi: 10.1016/j.stem.2020.07.022
- Kim SY, Kim SM, Lim S, et al. Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin Cancer Res. 2021;27:4397-4409. doi: 10.1158/1078-0432.CCR-20-5026
- Shi R, Radulovich N, Ng C, et al. Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res. 2020;26:1162-1174. doi: 10.1158/1078-0432.ccr-19-1376
- Wang HM, Zhang CY, Peng KC, et al. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep Med. 2023;4:100911. doi: 10.1016/j.xcrm.2022.100911
- Lei ZN, Teng QX, Tian Q, et al. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther. 2022;7(1):358. doi: 10.1038/s41392-022-01190-w
- Smyth EC, Nilsson M, Grabsch HI, Van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396:635-648. doi: 10.1016/s0140-6736(20)31288-5
- Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926. doi: 10.1126/science.aao2774
- Zhao Y, Li S, Zhu L, et al. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Rep Med. 2024;5:101627. doi: 10.1016/j.xcrm.2024.101627
- Seidlitz T, Merker SR, Rothe A, et al. Human gastric cancer modelling using organoids. Gut. 2018;68:207. doi: 10.1136/gutjnl-2017-314549
- Ukai S, Honma R, Sakamoto N, et al. Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS3 contributes to the attainment of features of cancer stem cell. Oncogene. 2020;39:7265-7278. doi: 10.1038/s41388-020-01492-9
- Harada K, Sakamoto N, Ukai S, et al. Establishment of oxaliplatin-resistant gastric cancer organoids: Importance of myoferlin in the acquisition of oxaliplatin resistance. Gastric Cancer. 2021;24:1264-1277. doi: 10.1007/s10120-021-01206-4
- Yan HHN, Siu HC, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 2018;23:882-897.e11. doi: 10.1016/j.stem.2018.09.016
- Schmäche T, Fohgrub J, Klimova A, et al. Stratifying esophago-gastric cancer treatment using a patient-derived organoid-based threshold. Mol Cancer. 2024;23:10. doi: 10.1186/S12943-023-01919-3
- James ND, Tannock I, N’Dow J, et al. The lancet commission on prostate cancer: Planning for the surge in cases. Lancet. 2024;403:1683-1722. doi: 10.1016/s0140-6736(24)00651-2
- Gao D, Vela V, Sboner V, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159: 176-187. doi: 10.1016/j.cell.2014.08.016
- Servant R, Garioni M, Vlajnic T, et al. Prostate cancer patient‐derived organoids: Detailed outcome from a prospective cohort of 81 clinical specimens. J Pathol. 2021;254:543. doi: 10.1002/path.5698
- Heninger E, Kosoff D, Rodems TS, et al. Live cell molecular analysis of primary prostate cancer organoids identifies persistent androgen receptor signaling. Med Oncol. 2021;38:135. doi: 10.1007/s12032-021-01582-y
- Compérat E, Amin MB, Cathomas R, et al. Current best practice for bladder cancer: A narrative review of diagnostics and treatments. Lancet. 2022;400:1712-1721. doi: 10.1016/s0140-6736(22)01188-6
- Dyrskjøt L, Hansel DE, Efstathiou JA, et al. Bladder cancer. Nat Rev Dis Primers. 2023;9:58. doi: 10.1038/s41572-023-00468-9
- Guo Z, Li Z, Wang J, et al. Modeling bladder cancer in the laboratory: Insights from patient-derived organoids. Biochim Biophys Acta Rev Cancer. 2024;1879:189199. doi: 10.1016/J.BBCAN.2024.189199
- Mullenders J, De Jongh E, Brousali A, et al. Mouse and human urothelial cancer organoids: A tool for bladder cancer research. Proc Natl Acad Sci U S A. 2019;116:4567-4574. doi: 10.1073/pnas.1803595116
- Kong JH, Lee H, Kim D, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun. 2020;11:5485. doi: 10.1038/S41467-020-19313-8
- Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173:515. doi: 10.1016/j.cell.2018.03.017
- Wang L, Wang X, Zhu X, et al. Drug resistance in ovarian cancer: From mechanism to clinical trial. Mol Cancer. 2024;23:66. doi: 10.1186/s12943-024-01967-3
- Kopper O, De Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 2019;25:838-849. doi: 10.1038/s41591-019-0422-6
- Maenhoudt N, Defraye C, Boretto M, et al. Developing organoids from ovarian cancer as experimental and preclinical models. Stem Cell Reports. 2020;14:717-729. doi: 10.1016/j.stemcr.2020.03.004
- Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer. 2024;24(8):523-539. doi: 10.1038/s41568-024-00706-6
- Huang L, Holtzinger A, Jagan I, et al. Muthuswamy, ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-1371. doi: 10.1038/nm.3973
- Pauli C, Hopkins BD, Prandi D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017;7:462-477. doi: 10.1158/2159-8290.cd-16-1154
- Andrews MG, Kriegstein AR. Challenges of organoid research. Annu Rev Neurosci. 2022;45:23-39. doi: 10.1146/annurev-neuro-111020-090812
- Schafer ST, Mansour AAF, Schlachetzki JCM, et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell. 2023;186:2111-2126.e20. doi: 10.1016/j.cell.2023.04.022
- Tan R, Zhang Z, Ding P, et al. A growth factor-reduced culture system for colorectal cancer organoids. Cancer Lett. 2024;588:216737. doi: 10.1016/J.CANLET.2024.216737
- Costa D, Venè R, Coco S, et al. SB202190 predicts BRAF-activating mutations in primary colorectal cancer organoids via Erk1-2 modulation. Cells. 2023;12:664. doi: 10.3390/cells12040664
- Salas-Silva S, Kim Y, Kim TH, et al. Human chemically-derived hepatic progenitors (hCdHs) as a source of liver organoid generation: Application in regenerative medicine, disease modeling, and toxicology testing. Biomaterials. 2023;303:122360. doi: 10.1016/j.biomaterials.2023.122360
- Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O. Engineering stem cell organoids. Cell Stem Cell. 2016;18: 25-38. doi: 10.1016/j.stem.2015.12.005
- Workman MJ, Mahe MM, Trisno S, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. 2017;23:49-59. doi: 10.1038/nm.4233
- Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539:560-564. doi: 10.1038/nature20168
- Janda CY, Dang LT, You C, et al. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature. 2017;545:234-237. doi: 10.1038/nature22306
- Magré L, Verstegen MMA, Buschow S, Van Der Laan LJW, Peppelenbosch M, Desai J. Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies. J Immunother Cancer. 2023;11:e006290. doi: 10.1136/jitc-2022-006290
- Li Z, Ma L, Gao Z, et al. Identification and validation of tumor-specific T cell receptors from tumor infiltrating lymphocytes using tumor organoid co-cultures. Cancer Immunol Immunother. 2024;73:164. doi: 10.1007/s00262-024-03749-8
- Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: A 3D model for the study of the tumor microenvironment. J Biol Eng. 2023;17:53. doi: 10.1186/s13036-023-00372-6
- Jouybar M, De Winde CM, Wolf V, Friedl P, Mebius RE, Den Toonder JMA. Cancer-on-chip models for metastasis: Importance of the tumor microenvironment. Trends Biotechnol. 2024;42:431-448. doi: 10.1016/j.tibtech.2023.10.001
- Komen V, Van Neerven SM, Van den Berg V, Vermeulen V, Van der Meer AD. Mimicking and surpassing the xenograft model with cancer-on-chip technology. EBioMedicine. 2021;66:103303. doi: 10.1016/j.ebiom.2021.103303
- Liu X, Fang J, Huang S, et al. Tumor-on-a-chip: From bioinspired design to biomedical application. Microsyst Nanoeng. 2021;7(1):1-23. doi: 10.1038/s41378-021-00277-8
- Shirure VS, Bi V, Curtis MB, et al. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip. 2018;18: 3687-3702. doi: 10.1039/c8lc00596f
- Gunti S, Hoke ATK, Vu KP, London NR. Organoid and spheroid tumor models: Techniques and applications. Cancers. 2021;13:874. doi: 10.3390/cancers13040874