Memristor-coupled tabu learning neuron and multi-cavity control of attractors
The tabu learning neuron model is constructed by coupling the tabu search algorithm with a neural network model designed to simulate the electrical activity and synchronous behavior of biological neural systems. This paper proposes a self-coupled tabu learning neuron-memristor (TLNM) system by integrating a tabu learning neuron with a newly proposed universal magnetically controlled memristor. The dynamical characteristics of the TLNM system were analyzed by plotting the Lyapunov exponent spectrum, bifurcation diagram, attractors, and spectral entropy complexity. During this process, it was found that the TLNM system exhibited a wide range of firing behaviors. Multi-cavity control of attractors generated by the TLNM system was achieved by introducing a multi-level step-function approach. Finally, the physical feasibility of the TLNM system was verified on the demand-side platform. The TLNM system proposed in this paper provides a theoretical foundation for studying brain-like behavior.
- Swanson LW. What is the brain? Trends in neurosciences.2000;23(11):519-527.https://doi.org/10.1016/S0166-2236(00)01639-8
- Zeki S. Art and the brain. Journal of Consciousness Studies.1999;6(6-7):76-96. https://doi.org/10.1017/cbo9781139030410.004
- Boccaletti S, Grebogi C, Lai Y-C, Mancini H, Maza D. The control of chaos: theory and applications. Physics reports.2000;329(3):103-197.https://doi.org/10.1016/s0370-1573(99)00096-4
- Mahmoudvand S, Ghazavi MR, Farrokhabadi A. Nonlinear dynamic modeling and chaos analysis of aircraft landing gear under two-and three-point landings. Nonlinear Science and Control Engineering. 2025;1(1):025280001. https://doi.org/10.36922/NSCE025280001
- Aihara K. Chaos engineering and its application to parallel distributed processing with chaotic neural networks. Proceedings of the IEEE. 2002;90(5):919-930.https://doi.org/10.1109/jproc.2002.1015014
- Kadmon J, Sompolinsky H. Transition to chaos in random neuronal networks. Physical Review X. 2015;5(4):041030. https://doi.org/10.1103/PhysRevX.5.041030
- Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction andex citation in nerve. The Journal of physiology. 1952;117(4):500. https://doi.org/10.1113/jphysiol.1952.sp004764
- Guo Z-H, Li Z-J, Wang M-J, Ma M-L. Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh–Rose and Fitz Hugh–Nagumo neurons with two time delays. Chinese Physics B. 2023;32(3):038701. https://doi.org/10.1088/1674-1056/aca601
- Yang Y, Liao X. Filippov Hindmarsh–Rose neuronal model with threshold policy control. IEEE transactions on neural networks and learning systems. 2018;30(1):306-311. https://doi.org/10.1109/TNNLS.2018.2836386
- Wu L, Yang S, Bai Y, Machado JM. Efficient robust optimization based on polynomial chaos and tabu search algorithm. International Journal of Applied Electromagnetics and Mechanics. 2012;39(1-4):145-150. https://doi.org/10.3233/jae-2012-1454
- Njitacke ZT, Nkapkop JDD, Signing VF, Tsafack N, Sone ME, Awrejcewicz J. Novel extreme multistable tabu learning neuron: Circuit implementation and application to cryptography. IEEE Transactions on Industrial Informatics.2022;19(8):8943-8952. https://doi.org/10.1109/TII.2022.3223233
- Cao Z, Sun B, Zhou G, et al. Memristor-based neura lnetworks: a bridge from device to artificial intelligence. Nanoscale Horizons. 2023;8(6):716-745. https://doi.org/10.1039/d2nh00536k
- Zhang S, Wang C, Zhang H, Lin H. Collective dynamics of adaptive memristor synapse-cascaded neural networks based on energy flow. Chaos, Solitons Fractals. 2024;186:115191.
- Deng W, Ma M. Analysis of the dynamical behavior of discrete memristor-coupled scale-free neural networks. Chinese Journal of Physics. 2024;91:966-976.https://doi.org/10.1016/j.cjph.2024.08.033
- Li C, Li Y, Yu W, Moroz I, Volos C. Constructing conditional symmetry in a chaotic map. Nonlinear Dynamics.2025;113(4):3857-3868.https://doi.org/10.1007/s11071-024-10368-6
- Chua L. Memristor-the missing circuit element. IEEE Transactions on circuit theory. 2003;18(5):507-519.https://doi.org/10.1109/TCT.1971.1083337
- Kim H, Sah MP, Yang C, Cho S, Chua LO. Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers. 2012;59(10):2422-2431.https://doi.org/10.1109/TCSI.2012.2188957
- Chanthbouala A, Garcia V, Cherifi RO, et al. A ferroelectric memristor. Nature materials. 2012;11(10):860-864.https://doi.org/10.1038/nmat3415
- Ascoli A, Corinto F, Senger V, Tetzlaff R. Memristor model comparison. IEEE Circuits and Systems Magazine.2013;13(2):89-105.https://doi.org/10.1109/MCAS.2013.2256272
- Jeong H, Shi L. Memristor devices for neural networks. Journal of Physics D: Applied Physics. 2018;52(2):023003. https://doi.org/10.1088/1361-6463/aae223
- Duan H, Cheng S, Qin L, et al. Low-power memristor based on two-dimensional materials. The Journal of Physical Chemistry Letters. 2022;13(31):7130-7138. https://doi.org/10.1021/acs.jpclett.2c01962
- Wan Z, Pu Y-F, Lai Q. Memristive feedback-controlled chaotic system with diverse dynamics. Nonlinear Science and Control Engineering. 2025;1(1):025310008. https://doi.org/10.36922/NSCE025310008
- Li J, Wang C, Deng Q. Symmetric multi-double-scroll attractors in Hopfield neural network under pulse controlled memristor. Nonlinear Dynamics. 2024;112(16):14463-14477. https://doi.org/10.1007/s11071-024-09791-6
- Li C, Yang Y, Yang X, Zi X, Xiao F. A tristable locally active memristor and its application in Hopfield neural network. Nonlinear Dynamics. 2022;108(2):1697-1717. https://doi.org/10.1007/s11071-022-07268-y
- Chen Q, Li B, Yin W, Jiang X, Chen X. Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks. Chaos, Solitons Fractals. 2023;171:113440. https://doi.org/10.1016/j.chaos.2023.113440
- Yang F, Ma J,Wu F. Review on memristor application in neural circuit and network. Chaos, Solitons Fractals. 2024;187:115361. https://doi.org/10.1016/j.chaos.2024.115361
- Lai Q, Yang L. Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors. Chaos, Solitons & Fractals. 2023;174:113807. https://doi.org/10.1016/j.chaos.2023.113807
- Yu F, Kong X, YaoW, et al. Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor. Chaos, Solitons &Fractals. 2024;179:114440. https://doi.org/10.1016/j.chaos.2023.114440
- Lu J, Xie X, Lu Y, Wu Y, Li C, Ma M. Dynamical behaviors indiscrete memristor-coupled small-world neuronal networks. Chinese Physics B. 2024;33(4):048701. https://doi.org/10.1088/1674-1056/ad1483
- Ding S, Wang N, Bao H, Chen B, Wu H, Xu Q. Memristor synapse-coupled piecewise-linear simplified Hopfield neura lnetwork: Dynamics analysis and circuit implementation. Chaos, Solitons & Fractals. 2023;166:112899. https://doi.org/10.1016/j.chaos.2022.112899
- Shang C, He S, Rajagopal K, Wang H, Sun K. Dynamics and chimera state in a neural network with discrete memristor coupling. The European Physical Journal Special Topics. 2022;231(22):4065-4076. https://doi.org/10.1140/epjs/s11734-022-00699-z
- Ren X, Xu X, Al-Barakati AA, Cao Y. Emotional changes induced by associative memory. The European Physical Journal Special Topics. 2025:1-11. https://doi.org/10.1140/epjs/s11734-025-01654-4
- Mou J, Cao H, Zhou N, Cao Y. An FHN-HR neuron network coupled with a novel locally active memristor andits DSP implementation. IEEE Transactions on Cybernetics.2024;54(12):7333-7342.https://doi.org/10.1109/TCYB.2024.3471644
- Lin H, Wang C, Sun J, Zhang X, Sun Y, Iu HH. Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application. Chaos, Solitons & Fractals. 2023;166:112905.https://doi.org/10.1016/j.chaos.2022.112905
- Zhang J, Bao H, Gu J, Chen M, Bao B. Multistability and synchronicity of memristor coupled adaptive synaptic neuronal network. Chaos, Solitons & Fractals. 2024;185:115157. https://doi.org/10.1016/j.chaos.2024.115157
- Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems. Progress of theoretical physics. 1979;61(6):1605-1616. https://doi.org/10.1143/PTP.61.1605
- Mou J, Tan L, Cao Y, Zhou N, Zhang Y. Multi-face image compression encryption scheme combining extraction with STP-CS for face database. IEEE Internet of Things Journal.2025;12(12):19522-19531. https://doi.org/10.1109/JIOT.2025.3541228
- Tan L, Cao Y, Banerjee S, Mou J. Multi-medical image protection: compression–encryption scheme based on tlnn and mask cubes. The Journal of Supercomputing. 2025;81(1):96. https://doi.org/10.1007/s11227-024-06624-6
- Mou J, Zhang Z, Banerjee S, Zhang Y. Combining semi-tensor product compressed sensing and session keys for low-cost encryption of batch information in WBANs. IEEE Internet of Things Journal. 2024;11(20):33565-33576.https://doi.org/10.1109/JIOT.2024.3429349
