Nonlinear dynamic modeling and chaos analysis of aircraft landing gear under two- and three-point landings

The landing gear system plays a critical role in maintaining aircraft stability during taxiing, takeoff, and landing. Traditional approaches to estimating landing impact forces often suffer from inaccuracies, stemming from either overly simplistic assumptions or the lack of detailed structural data during early design stages. To address this, we develop a four-degree-of-freedom nonlinear dynamic model of an aircraft’s landing system, incorporating both main and nose landing gears modeled as spring-damper assemblies with nonlinear tire stiffness. Two common landing scenarios, three-point and two-point landings, are simulated using numerical methods based on the fourth-order Runge–Kutta algorithm. The system’s behavior was analyzed under varying stiffnesses and initial landing velocities using phase space diagrams, Poincaré maps, and fast Fourier transforms to identify dominant frequencies and potential chaotic responses. The findings underscore the significant impact of tire stiffness on vibration amplitude and the smoothness of landing. High stiffness (3 × 108 N/m) accelerates system stabilization but causes excessive force peaks, while low stiffness (3 × 104 N/m) leads to persistent oscillations and limit cycles. This model enables efficient prediction of landing gear responses and offers insight into optimal parameter selection for safe and comfortable aircraft landings.
- Pazmany L. Landing Gear Design for Light Aircraft. San Diego,CA: Pazmany Aircraft Corporation; 1986.
- Sadraey MH. Aircraft Design: A Systems Engineering Approach.Hoboken, NJ: John Wiley Sons; 2012.
- Mikulowski G, Holnicki-Szulc J. Adaptive aircraft shockabsorbers. Bull Pol Acad Sci Tech Sci. 2004;52(3):12-15.
- Carter JF, Nagy CJ. The NASA landing gear test airplane. In:NASA Technical Paper 3568; 1995.
- Niu MCY. Airframe Structural Design. Burbank, CA: LockheedAeronautical Systems; 1998.
- Shao H, Li D, Kan Z, Zhao S, Xiang J, Wang C. Analysisof catapult-assisted takeoff of carrier-based aircraft based onfinite element method and multibody dynamics couplingmethod. Aerospace. 2023;10(12):1062. https://doi.org/10.3390/aerospace10121005
- Black RJ. Application of Tire Dynamics to Aircraft Landing GearDesign Analysis. NASA Langley Research Center; 1983.
- Daniels JN. A method for landing gear modeling and simulationwith experimental validation. NASA Technical Memorandum;1996.
- Lyle KH, Jackson KE, Fasanella EL. Simulation of aircraftlanding gears with a nonlinear dynamic finite element code.J Aircr. 2002;39(1):142-147. https://doi.org/10.2514/2.2908
- Long SH. Active Control of Shimmy Oscillation in AircraftLanding Gear. Cranfield University; 2006.
- Thota P, Krauskopf B, Lowenberg M. Multi-parameterbifurcation study of shimmy oscillations in adual-wheel aircraft nose landing gear. Nonlinear Dyn.2012;70(2):1675-1688. https://doi.org/10.1007/s11071-012-0565-1
- Knowles JAC, Krauskopf B, Lowenberg M. Numericalcontinuation analysis of a three-dimensional aircraft mainlanding gear mechanism. Nonlinear Dyn. 2013;71(1-2):1-20. https://doi.org/10.1007/s11071-012-0664-z
- Toloei A, Aghamirbaha E, Zarchi M. Mathematical model andvibration analysis of aircraft with active landing gear systemusing linear quadratic regulator technique. Int J Eng Trans BAppl. 2016;29(2):160-168. https://doi.org/10.5829/idosi.ije.2016.29.02b.01
- Wu WG,Wang ZT, Jia T. Nonlinear dynamic response analysisof aircraft landing gear with finite element modeling. ApplMech Mater. 2016;826:23-27. https://doi.org/10.4028/www.scientific.net/AMM.826.23
- Burbano-Lombana DA, Coraggio M, Di Bernardo M, GarofaloF, Pugliese M. Adaptive and quasi-sliding control of shimmyin landing gears. In: Proceedings of the European ControlConference (ECC); 2018:1462-1467. https://doi.org/10.23919/ECC.2018.8550304
- Wong J, Ryan L, Kim IY. Design optimization of aircraftlanding gear assembly under dynamic loading. StructMultidiscip Optim. 2018;57(3):1311-1324. https://doi.org/10.1007/s00158-017-1817-y
- Caputo F, De Luca A, Greco A, et al. Established numericaltechniques for the structural analysis of a regional aircraftlanding gear. Adv Mater Sci Eng. 2018;2018:8536581. https://doi.org/10.1155/2018/8536581
- Caputo F, De Luca A, Greco A, Maietta S, Marro A,Apicella A. Investigation on the static and dynamic structuralbehaviours of a regional aircraft main landing gear by anew numerical methodology. Frattura Integrita Strutturale. 2018;12(43):188-202. https://doi.org/10.3221/IGF-ESIS.43.15
- Tartaruga I, Cooper JE, Lowenberg MH, Sartor P, LemmensY. Uncertainty and sensitivity analysis of bifurcation locicharacterizing nonlinear landing-gear dynamics. J Aircr.2018;55(4):1491-1503. https://doi.org/10.2514/1.C034252
- Zarchi M, Attaran B. Improved design of an activelanding gear for a passenger aircraft using multi-objectiveoptimization technique. Struct Multidiscip Optim.2019;59(5):1891-1906. https://doi.org/10.1007/s00158-018-2135-8
- Richards PW, Erickson A. Dynamic loads analysis usingdetailed aircraft and landing gear modeling. In: AIAA Scitech2019 Forum; 2019;1-15. https://doi.org/10.2514/6.2019-0759
- Sanches L, Guimaraes TAM, Marques FD. Nonlinear energysink to enhance the landing gear shimmy performance. ActaMech. 2021;232(7):2605-2622. https://doi.org/10.1007/s00707-021-02985-8
- Kang BH, Jo BH, Kim BG, Hwang JH, Choi SB. Linear andnonlinear models for drop simulation of an aircraft landinggear system with MR dampers. Actuators. 2023;12(7):287. https://doi.org/10.3390/act12070287
- Jiang Y, Feng G, Liu P, Yuan L, Ding J, Jiang B. Evaluationof joint clearance effects on the shimmy of nose landing gear.Aerospace. 2023;10(8):722. https://doi.org/10.3390/aerospace10080722
- Delprete C, Dagna A, Brusa E. Model-based design of aircraftlanding gear system. Appl Sci. 2023;13(20):11465. https://doi.org/10.3390/app132011465
- Rahmani M, Behdinan K. Interaction of torque link freeplayand Coulomb friction nonlinearities in nose landing gearshimmy scenarios. Int J Non Linear Mech. 2020;119:103338. https://doi.org/10.1016/j.ijnonlinmec.2019.103338
- Suresh PS, Sura NK, Shankar K. Investigation of nonlinearlanding gear behavior and dynamic responses on highperformance aircraft. Proc Inst Mech Eng G J Aerosp Eng.2019;233(15):5729-5742. https://doi.org/10.1177/0954410019854628
- Sivakumar S, Selvakumaran T, Sanjay B. Investigation ofrandom runway effect on landing of an aircraft with activelanding gears using nonlinear mathematical model. J Vibroeng.2021;23(8):1658-1671. https://doi.org/10.21595/jve.2021.21915
- Pirooz M, Mirmahdi SH, Khoogar AR. Robust force anddisplacement control of an active landing gear for vibrationreduction at touchdown and during taxiing. SN Appl Sci.2021;3(4):543. https://doi.org/10.1007/s42452-021-04320-1
- Ruan S, Zhang M, Yang S, Hu X, Nie H. Research on thestability and bifurcation characteristics of a landing gearshimming dynamics system. Aerospace. 2024;11(2):104. https://doi.org/10.3390/aerospace11020104
- Cheng L, Cao H, Zhang L. Two-parameter bifurcation analysisof an aircraft nose landing gear model. Nonlinear Dyn.2021;103(1):387-400. https://doi.org/10.1007/s11071-020-06129-w
- Du X, Xu Y, Liu Q, et al. Shimmy dynamics in a dual-wheelnose landing gear with freeplay under stochastic winddisturbances. Nonlinear Dyn. 2024;112(4):2477-2499. https://doi.org/10.1007/s11071-023-09182-3
- Zhou J, Zhao Y, Li Q, Zhou L. Stability analysis of nonlinearmodels of nose landing gear shimmy. World J Eng Technol.2024;12(1):103-116. https://doi.org/10.4236/wjet.2024.121007
- Xiao X, Zhao Y, Wu H, Zhu G. Dynamic analysis of noselanding gear shimmy considering strut height and experimenton the test platform. Open J Appl Sci. 2025;15(4):919-937. https://doi.org/10.4236/ojapps.2025.154062
- Howe D. Aircraft Loading and Structural Layout. Reston, VA:American Institute of Aeronautics and Astronautics; 2004.
- Federal Aviation Administration. Federal Aviation Regulations,Transport Category Airplanes, Part 2. Washington, DC: FAA;2022.
- Wiggins S, Marsden JE, Sirovich L, et al. Introduction to AppliedNonlinear Dynamical Systems and Chaos. 2nd ed. New York, NY:Springer Science Business Media; 2003. https://doi.org/10.1007/b97401
- Oppenheim AV, Schafer RW. Discrete-Time Signal Processing.3rd ed. Upper Saddle River, NJ: Pearson; 2009.