Controlling the electron spin states of single-atom catalysts for enhanced electrocatalytic performances
Single-atom catalysts (SACs) have attracted extensive attention in the field of catalysis for their maximum metal dispersion and atomic utilization efficiency. The spin states of electrons in SACs are closely related to their catalytic activity, and controlling their electronic structure is the key to fully unlocking their potential. At present, there are relatively few researches on improving catalyst activity by adjusting electronic structure, and there is a lack of systematic research to control its influence. In this paper, an example of the design and synthesis of SACs using electron spin state to control the catalytic performance is presented. The mechanism of spin-controlled catalytic enhancement is discussed. The applications of spin-state control in oxygen reduction reaction, oxygen evolution reaction, and nitrogen reduction reaction are demonstrated. Finally, the potential challenges and future opportunities of the electronic structure of SACs are presented, hoping to arouse more people’s interest in the study of the catalytic properties of electron spin regulation and stimulate the further development of single-atom catalysis technology.

- Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev. 2010;110(11):6474-6502. doi: 10.1021/cr100246c
- Ding S, Hulsey MJ, Perez-Ramırez J, Yan N. Transforming energy with single-atom catalysts. Joule. 2019;3(12):2897-2929. doi: 10.1016/j.joule.2019.09.015
- Lu H, Tournet J, Dastafkan K, et al. Noble-metal-free multicomponent nanointegration for sustainable energy conversion. Chem Rev. 2021;121(17):10271-10366. doi: 10.1021/acs.chemrev.0c01328
- Zhu C, Fu S, Shi Q, Du D, Lin Y. Single‐atom electrocatalysts. Angew Chem Int Ed Engl. 2017;56(45):13944-13960. doi: 10.1002/anie.201703864
- Zhang Q, Guan J. Single‐atom catalysts for electrocatalytic applications. Adv Funct Mater. 2020;30(31):2000768. doi: 10.1002/adfm.202000768
- He T, Wang W, Shi F, et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature. 2021;598(7879):76-81. doi: 10.1038/s41586-021-03870-z
- Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017;355(6321):eaad4998. doi: 10.1126/science.aad4998
- Wang Q, Wei H, Liu P, Su Z, Gong XQ. Recent advances in copper-based catalysts for electrocatalytic CO2 reduction toward multi-carbon products. Nano Res Energy. 2024;3:e9120112. doi: 10.26599/nre.2024.9120112
- Yang HH, Qian XR, Zhang N, et al. Alliance of atomic-scale/ nanoscale Fe/Co active sites with hierarchically porous N-doped carbon frameworks for efficient electrocatalytic oxygen reduction. Rare Met. 2023;42(11):3766-3779. doi: 10.1007/s12598-023-02397-8
- Cui P, Zhao L, Long Y, Dai L, Hu C. Carbon‐based electrocatalysts for acidic oxygen reduction reaction. Angew Chem Int Ed Engl. 2023;62(14):e202218269. doi: 10.1002/anie.202218269
- Yan L, Li P, Zhu Q, et al. Atomically precise electrocatalysts for oxygen reduction reaction. Chem. 2023;9(2):280-342. doi: 10.1016/j.chempr.2023.01.003
- Cheng Y, Gong X, Tao S, et al. Mechano-thermal milling synthesis of atomically dispersed platinum with spin polarization induced by cobalt atoms towards enhanceed oxygen reduction reaction. Nano Energy. 2022;98:107341. doi: 10.1016/j.nanoen.2022.107341
- Wang J, Hu C, Wang L, et al. Suppressing thermal migration by fine‐tuned metal‐support interaction of iron single‐atom catalyst for efficient ORR. Adv Funct Mater. 2023;33(43):2304277. doi: 10.1002/adfm.202304277
- Li P, Guo Q, Zhang J, Chen R, Ding S, Su Y. How the microenvironment dominated by the distance effect to regulate the FeN4 site ORR activity and selectivity? Nano Res. 2024;17:5735-5741. doi: 10.1007/s12274-024-6414-y
- Grimaud A, Diaz-Morales O, Han B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem. 2017;9(5):457-465. doi: 10.1038/nchem.2695
- Cao W, Gao XH, Wu J, Huang AQ, Hu H, Chen ZW. Regulating the spin polarization of NiFe layered double hydroxide for the enhanced oxygen evolution reaction. ACS Catal. 2024;14(5):3640-3646. doi: 10.1021/acscatal.3c06180
- Im H, Ma S, Lee H, et al. Elucidating the chirality transfer mechanisms during enantioselective synthesis for the spin-controlled oxygen evolution reaction. Energy Environ Sci. 2023;16(3):1187-1199. doi: 10.1039/d2ee03853f
- Wang Q, Huang X, Zhao ZL, et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J Am Chem Soc. 2020;142(16):7425-7433. doi: 10.1021/jacs.9b12642
- Bai X, Han J, Niu X, Guan J. The d-orbital regulation of isolated manganese sites for enhanced oxygen evolution. Nano Res. 2023;16(8):10796-10802. doi: 10.1007/s12274-023-5859-8
- Du HL, Chatti M, Hodgetts RY, et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature. 2022;609(7928):722-727. doi: 10.1038/s41586-022-05108-y
- Wang X, Qiu S, Feng J, et al. Confined Fe-Cu clusters as sub‐nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv Mater. 2020;32(40):2004382. doi: 10.1002/adma.202004382
- Li XY, Duan M, Ou P. High-throughput screening of single-atom catalysts confined in monolayer black phosphorus for efficient nitrogen reduction reaction. Nano Res. 2023;17(4):2360-2367. doi: 10.1007/s12274-023-6068-1
- Li L, Yu W, Gong W, et al. Sulfur-induced electron redistribution of single molybdenum atoms promotes nitrogen electroreduction to ammonia. Appl Catal B Environ. 2023;321:122038. doi: 10.1016/j.apcatb.2022.122038
- Hammer B, Nørskov JK. Electronic factors determining the reactivity of metal surfaces. Surf Sci. 1995;343(3):211-220. doi: 10.1016/0039-6028(96)80007-0
- Zhang K, Cao A, Wandall LH, et al. Spin-mediated promotion of Co catalysts forammonia synthesis. Science. 2024;383(6689):1357-1363. doi: 10.1126/science.adn0558
- Rabi II. Refraction of beams of molecules. Nature. 1929;123:163-164. doi: 10.1038/123163b0
- Schäffer CE, Anthon C, Bendix J. Kohn-Sham DFT results projected on ligand-field models: Using DFT to supplement ligand-field descriptions and to supply ligand-field parameters. Coord Chem Rev. 2009;253(5-6):575-593. doi: 10.1016/j.ccr.2008.09.010
- Lukoyanov DA, Yang ZY, Pérez-González A, et al. 13C ENDOR characterization of the central carbon within the nitrogenase catalytic cofactor indicates that the CFe6Core is a stabilizing “heart of steel”. J Am Chem Soc. 2022;144(40):18315-18328. doi: 10.1021/jacs.2c06149
- Lai WH, Miao Z, Wang YX, Wang JZ, Chou SL. Atomic‐local environments of single‐atom catalysts: Synthesis, electronic structure, and activity. Adv Energy Mater. 2019;9(43):1900722. doi: 10.1002/aenm.201900722
- Liu D, He Q, Ding S, Song L. Structural regulation and support coupling effect of single‐atom catalysts for heterogeneous catalysis. Adv Energy Mater. 2020;10(32):2001482. doi: 10.1002/aenm.202001482
- Jin H, Zhou K, Zhang R, et al. Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation. Nat Commun. 2023;14(1):2494. doi: 10.1038/s41467-023-38310-1
- Wei J, Tang H, Sheng L, et al. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction. Nat Commun. 2024;15(1):559. doi: 10.1038/s41467-024-44815-0
- Joy J, Danovich D, Kaupp M, Shaik S. Covalent vs charge-shift nature of the metal-metal bond in transition metal complexes: A unified understanding. J Am Chem Soc. 2020;142(28):12277-12287. doi: 10.1021/jacs.0c03957
- Li H, Chuai M, Xiao X, et al. Regulating the spin state configuration in bimetallic phosphorus trisulfides for promoting sulfur redox kinetics. J Am Chem Soc. 2023;145(41):22516-22526. doi: 10.1021/jacs.3c07213
- Dai Y, Liu B, Zhang Z, et al. Tailoring the d‐orbital splitting manner of single atomic sites for enhanced oxygen reduction. Adv Mater. 2023;35(14):2210757. doi: 10.1002/adma.202210757
- Do VH, Lee JM. Orbital occupancy and spin polarization: From mechanistic study to rational design of transition metal-based electrocatalysts toward energy applications. ACS Nano. 2022;16(11):17847-17890. doi: 10.1021/acsnano.2c08919
- Gong YN, Zhong W, Li Y, et al. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J Am Chem Soc. 2020;142(39):16723-16731. doi: 10.1021/jacs.0c07206
- Xie Z, Hwang S, Chen JG. Reduction-induced metal/oxide interfacial sites for selective CO2 hydrogenation. SmartMat. 2023;4(4):e1201. doi: 10.1002/smm2.1201
- Tian Y, Cao H, Yang H, et al. Electron spin catalysis with graphene belts. Angew Chem Int Ed Engl. 2023;62(10):e202215295. doi: 10.1002/anie.202215295
- Kong X, Liu B, Tong Z, et al. Charge‐switchable ligand ameliorated cobalt polyphthalocyanine polymers for high‐current‐density electrocatalytic CO2 reduction. SmartMat. 2024. doi: 10.1002/smm2.1262
- Wang ML, Zhao J, Wang JJ, et al. MoO3/C-supported Pd nanoparticles as an efficient bifunctional electrocatalyst for ethanol oxidation and oxygen reduction reactions. Rare Met. 2023;42(5):1516-1525. doi: 10.1007/s12598-022-02211-x
- Qi Z, Zhou Y, Guan R, Fu Y, Baek JB. Tuning the coordination environment of carbon‐based single‐atom catalysts via doping with multiple heteroatoms and their applications in electrocatalysis. Adv Mater. 2023;35(38):2210575. doi: 10.1002/adma.202210575
- de la Torre B, Švec M, Hapala P, et al. Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nat Commun. 2018;9(1):2831. doi: 10.1038/s41467-018-05163-y
- Fan M, Cui J, Wu J, Vajtai R, Sun D, Ajayan PM. Improving the catalytic activity of carbon‐supported single atom catalysts by polynary metal or heteroatom doping. Small. 2020;16(22):1906782. doi: 10.1002/smll.201906782
- Shang H, Zhou X, Dong J, et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat Commun. 2020;11(1):3049. doi: 10.1038/s41467-020-16848-8
- Pei J, Shang H, Mao J, et al. A replacement strategy for regulating local environment of single-atom Co-SxN4−x catalysts to facilitate CO2 electroreduction. Nat Commun. 2024;15(1):416. doi: 10.1038/s41467-023-44652-7
- McSkimming A, Harman WH. A terminal N2 complex of high-spin Iron (I) in a weak, trigonal ligand field. J Am Chem Soc. 2015;137(28):8940-8943. doi: 10.1021/jacs.5b06337
- Graham MJ, Zadrozny JM, Shiddiq M, et al. Influence of electronic spin and spin-orbit coupling on Decoherence in mononuclear transition metal complexes. J Am Chem Soc. 2014;136(21):7623-7626. doi: 10.1021/ja5037397
- Li Y, Ji Y, Zhao Y, et al. Local spin‐state tuning of iron single‐atom electrocatalyst by S‐coordinated doping for kinetics‐boosted ammonia synthesis. Adv Mater. 2022;34(28):2202240. doi: 10.1002/adma.202202240
- Cai J, Xu Y, Sun Y, et al. Regulating the coordination environment of Fe/Co-N/S-C to enhance ORR and OER bifunctional performance. Inorg Chem Front. 2023;10(6):1826-1837. doi: 10.1039/d2qi02704f
- An Q, Zhang X, Yang C, et al. Engineering unsymmetrically coordinated Fe sites via heteroatom pairs synergetic contribution for efficient oxygen reduction. Small. 2023;19(49):2304303. doi: 10.1002/smll.202304303
- Pan Y, Ma X, Wang M, et al. Construction of N, P Co‐doped carbon frames anchored with Fe single atoms and Fe2P nanoparticles as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv Mater. 2022;34(29):2203621. doi: 10.1002/adma.202203621
- Li Y, Hu J, Zou Y, et al. Catalytic activity enhancement by P and S co-doping of a single-atom Fe catalyst for peroxymonosulfate-based oxidation. Chem Eng J. 2023;453:139890. doi: 10.1016/j.cej.2022.139890
- Yang Z, Yang X, An G, Wang D. Regulating spin state of Fe active sites by the P-doping strategy for enhancing peroxymonosulfate activation. Appl Catal B. 2023;330:122618. doi: 10.1016/j.apcatb.2023.122618
- Wang H, Zhao C, Wang G, Zhang H. In situ transformation of Fe-doped Ni12P5 into low-crystallized NiFe2O4 with high-spin Fe4+ for efficient electrocatalytic water oxidation. J Mater Chem A. 2021;9(16):10289-10296. doi: 10.1039/d1ta01310f
- Chai Y, Dai H, Duan X, et al. Elucidation of the mechanistic origin of spin-state-dependent P-doped Fe single-atom catalysts for the oxidation of organic pollutants through peroxymonosulfate activation. Appl Catal B. 2024;341:123289. doi: 10.1016/j.apcatb.2023.123289
- Li R, Wang D. Superiority of Dual‐atom catalysts in electrocatalysis: One step further than single‐atom catalysts. Adv Energy Mater. 2022;12(9):2103564. doi: 10.1002/aenm.202103564
- Tang T, Wang Z, Guan J. Structural optimization of carbon-based diatomic catalysts towards advanced electrocatalysis. Coord Chem Rev. 2023;492:215288. doi: 10.1016/j.ccr.2023.215288
- Pu T, Ding J, Zhang F, et al. Dual atom catalysts for energy and environmental applications. Angew Chem Int Ed Engl. 2023;62(40):e202305964. doi: 10.1002/anie.202305964
- Bai L, Hsu CS, Alexander DT, Chen HM, Hu X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat Energy. 2021;6(11):1054-1066. doi: 10.1038/s41560-021-00925-3
- Pei J, Yang L, Lin J, et al. Integrating host design and tailored electronic effects of Yolk-Shell Zn-Mn diatomic sites for efficient CO2 electroreduction. Angew Chem Int Ed Engl. 2023;63(3):e202316123. doi: 10.1002/anie.202316123
- Yang G, Zhu J, Yuan P, et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat Commun. 2021;12(1):1734. doi: 10.1038/s41467-021-21919-5
- Zhang J, Zhao Y, Zhao W, et al. Improving electrocatalytic oxygen evolution through local field distortion in Mg/Fe dual‐site catalysts. Angew Chem Int Ed Engl. 2023;62(52):e202314303. doi: 10.1002/anie.202314303
- Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B. 2004;108(46):17886-17892. doi: 10.1021/jp047349
- Wang L, An Q, Sheng X, et al. Modulation of electronic spin state and construction of dual-atomic tandem reaction for enhanced pH-universal oxygen reduction. Appl Catal B. 2024;343:123509. doi: 10.1016/j.apcatb.2023.123509
- Sun Y, Wang J, Liu Q, et al. Itinerant ferromagnetic half metallic cobalt-iron couples: Promising bifunctional electrocatalysts for ORR and OER. J Mater Chem A. 2019;7(47):27175-27185. doi: 10.1039/c9ta08616a
- Kwak DH, Han SB, Lee YW, et al. Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl Catal B. 2017;203:889-898. doi: 10.1016/j.apcatb.2016.10.084
- Li H, Wang J, Qi R, et al. Enhanced Fe 3d delocalization and moderate spin polarization in Fe Ni atomic pairs for bifunctional ORR and OER electrocatalysis. Appl Catal B. 2021;285:119778. doi: 10.1016/j.apcatb.2020.119778
- Köbke A, Gutzeit F, Röhricht F, et al. Reversible coordination-induced spin-state switching in complexes on metal surfaces. Nat Nanotechnol. 2019;15(1):18-21. doi: 10.1038/s41565-019-0594-8
- Su X, Jiang Z, Zhou J, et al. Complementary operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat Commun. 2022;13(1):1322. doi: 10.1038/s41467-022-29035-8
- Liu Y, Liu X, Lv Z, et al. Tuning the Spin state of the iron center by bridge‐bonded Fe‐O‐Ti ligands for enhanced oxygen reduction. Angew Chem Int Ed Engl. 2022;61(21):e202117617. doi: 10.1002/anie.202117617
- Wei X, Jiang C, Xu H, et al. Synergistic effect of organic ligands on metal site spin states in 2D metal-organic frameworks for enhanced ORR performance. ACS Catal. 2023;13(24):15663-15672. doi: 10.1021/acscatal.3c04100
- Xie C, Yan D, Chen W, et al. Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater Today. 2019;31:47-68. doi: 10.1016/j.mattod.2019.05.021
- Zhu J, Mu S. Defect engineering in carbon‐based electrocatalysts: Insight into intrinsic carbon defects. Adv Funct Mater. 2020;30(25):2001097. doi: 10.1002/adfm.202001097
- Liu K, Fu J, Lin Y, et al. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat Commun. 2022;13(1):2075. doi: 10.1038/s41467-022-29797-1
- Zhao Z, Long Y, Chen Y, Zhang F, Ma J. Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction. Chem Eng J. 2022;430:132682. doi: 10.1016/j.cej.2021.132682
- Ye TN, Park SW, Lu Y, et al. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J Am Chem Soc. 2020;142(33):14374-14383. doi: 10.1021/jacs.0c06624
- Qiu W, Yang N, Luo D, et al. Precise synthesis of Fe–N2 with N vacancies coordination for boosting electrochemical artificial N2 fixation. Appl Catal B. 2021;293:120216. doi: 10.1016/j.apcatb.2021.120216
- Wu ZP, Lu XF, Zang SQ, Lou XW. Non‐noble‐metal‐based electrocatalysts toward the oxygen evolution reaction. Adv Funct Mater. 2020;30(15):1910274. doi: 10.1002/adfm.201910274
- Gewirth AA, Varnell JA, DiAscro AM. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem Rev. 2018;118(5):2313-2339. doi: 10.1021/acs.chemrev.7b00335
- Wang Y, Hao J, Liu Y, et al. Recent advances in regulating the performance of acid oxygen reduction reaction on carbon-supported non-precious metal single atom catalysts. J Energy Chem. 2023;76:601-616. doi: 10.1016/j.jechem.2022.09.047
- Zhang H, Chen HC, Feizpoor S, et al. Tailoring oxygen reduction reaction kinetics of Fe-N-C catalyst via spin manipulation for efficient zinc-air batteries. Adv Mater. 2024;36:e2400523. doi: 10.1002/adma.202400523
- Yu Y, Shi J, Li M, et al. Local magnetic effect-induced electron configuration regulation: Spin flipping of iron centers for molecular catalysis. ACS Catal. 2024;14(9):7191-7200. doi: 10.1021/acscatal.4c00285
- Zheng T, Wang J, Xia Z, Wang G, Duan Z. Spin-dependent active centers in Fe-N-C oxygen reduction catalysts revealed by constant-potential density functional theory. J Mater Chem A. 2023;11(36):19360-19373. doi: 10.1039/d3ta03271j
- Zhang C, Wang X, Ma Z, et al. Spin state modulation on dual Fe center by adjacent Ni sites enabling the boosted activities and ultra-long stability in Zn-air batteries. Sci Bull. 2023;68(18):2042-2053. doi: 10.1016/j.scib.2023.07.049
- Khanam R, Hassan A, Nazir Z, Dar MA. Nickel single atom catalyst supported on the gallium nitride monolayer: First principles investigations on the decisive role of support in the electrocatalytic reduction of CO2. Sustain Energy Fuels. 2023;7(20):5046-5056. doi: 10.1039/D3SE00830D
- Yu M, Li A, Kan E, Zhan C. Substantial impact of spin state evolution in OER/ORR catalyzed by Fe-N-C. ACS Catal. 2024;14(9):6816-6826. doi: 10.1021/acscatal.3c06122
- Kossak AE, Kaczmarek AC, Valvidares M, Gargiani P, Hasan MU, Beach GS. Ionic modulation of ferromagnetic and proximity‐induced magnetization in Co/Pd heterostructures. Adv Funct Mater. 2024:2403858. doi: 10.1002/adfm.202403858
- Chen Z, Niu H, Ding J, et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew Chem Int Ed Engl. 2021;60(48):25404-25410. doi: 10.1002/anie.202110243
- Xue D, Yuan P, Jiang S, et al. Altering the spin state of Fe-N-C through ligand field modulation of single-atom sites boosts the oxygen reduction reaction. Nano Energy. 2023;105:108020. doi: 10.1016/j.nanoen.2022.108020
- Guo Y, Wang C, Xiao Y, et al. Increasing the number of modulated Fe single-atom sites by adjacent nanoparticles for efficient oxygen reduction with spin-state transition. Nano Energy. 2023;117:108895. doi: 10.1016/j.nanoen.2023.108895
- Ye S, Xie S, Lei Y, et al. Modulating the electronic spin state by constructing dual-metal atomic pairs for activating the dynamic site of oxygen reduction reaction. Nano Res. 2022;16(2):1869-1877. doi: 10.1007/s12274-022-4979-x
- Wei X, Song S, Cai W, et al. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem. 2023;9(1):181-197. doi: 10.1016/j.chempr.2022.10.001
- Zhao Y, Wang H, Li J, et al. Regulating the spin‐state of rare‐earth Ce single atom catalyst for boosted oxygen reduction in neutral medium. Adv Funct Mater. 2023;33(47):2305268. doi: 10.1002/adfm.202305268
- Cai H, Chen B, Zhang X, et al. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2020;14(1):122-130. doi: 10.1007/s12274-020-3054-8
- Chen C, Wu Y, Li X, et al. Modulating Fe spin state in FeNC catalysts by adjacent Fe atomic clusters to facilitate oxygen reduction reaction in proton exchange membrane fuel cell. Appl Catal B. 2024;342:123407. doi: 10.1016/j.apcatb.2023.123407
- Lin L, Ni Y, Shang L, et al. Lattice strained induced spin regulation in Co-N/S coordination‐framework enhanced oxygen reduction reaction. Angew Chem Int Ed Engl. 2024;63(16):e202319518. doi: 10.1002/anie.202319518
- Su Y, Ding X, Yuan J. Trimetallic nanoarchitectonics of FeCoNi catalyst with modulated spin polarization for enhanced oxygen reduction performance. Int J Hydrogen Energy. 2024;55:893-903. doi: 10.1016/j.ijhydene.2023.11.248
- Wu T, Ren X, Sun Y, et al. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat Commun. 2021;12(1):3634. doi: 10.1038/s41467-021-23896-1
- Ge J, Chen RR, Ren X, Liu J, Ong SJ, Xu ZJ. Ferromagnetic-antiferromagnetic coupling core-shell nanoparticles with spin conservation for water oxidation. Adv Mater. 2021;33(42):e2101091. doi: 10.1002/adma.202101091
- Zhao W, Yang J, Xu F, Weng B. Recent advancements on spin engineering strategies for highly efficient electrocatalytic oxygen evolution reactions. Small. 2024:e2401057. doi: 10.1002/smll.202401057
- Yang L, He R, Botifoll M, et al. Enhanced oxygen evolution and zinc-air battery performance via electronic spin modulation in heterostructured catalysts. Adv Mater. 2024:e2400572. doi: 10.1002/adma.202400572
- Huang J, Borca CN, Huthwelker T, et al. Surface oxidation/ spin state determines oxygen evolution reaction activity of cobalt-based catalysts in acidic environment. Nat Commun. 2024;15(1):3067. doi: 10.1038/s41467-024-47409-y
- Li Z, Wang Z, Xi S, et al. Tuning the spin density of cobalt single-atom catalysts for efficient oxygen evolution. ACS Nano. 2021;15(4):7105-7113. doi: 10.1021/acsnano.1c00251
- Sun Z, Lin L, He J, et al. Regulating the spin state of FeIII enhances the magnetic effect of the molecular catalysis mechanism. J Am Chem Soc. 2022;144(18):8204-8213. doi: 10.1021/jacs.2c01153
- Jia Z, Yuan Y, Zhang Y, et al. Optimizing 3d spin polarization of CoOOH by in situ Mo doping for efficient oxygen evolution reaction. Carbon Energy. 2023;6(1):e418. doi: 10.1002/cey2.418
- Li L, Zhou J, Wang X, et al. Spin‐polarization strategy for enhanced acidic oxygen evolution activity. Adv Mater. 2023;35(35):e2302966. doi: 10.1002/adma.202302966
- Guo C, Ran J, Vasileff A, Qiao SZ. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ Sci. 2018;11(1):45-56. doi: 10.1039/c7ee02220d
- Qing G, Ghazfar R, Jackowski ST, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem Rev. 2020;120(12):5437-5516. doi: 10.1021/acs.chemrev.9b00659
- Huang Z, Rafiq M, Woldu AR, Tong QX, Astruc D, Hu L. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord Chem Rev. 2023;478:214981. doi: 10.1016/j.ccr.2022.214981
- Song G, Gao R, Zhao Z, et al. High-spin state Fe(III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification. Appl Catal B. 2022;301:120809. doi: 10.1016/j.apcatb.2021.120809
- Wen Y, Liu J, Zhang F, et al. Mesoporous MnO2 nanosheets for efficient electrocatalytic nitrogen reduction via high spin polarization induced by oxygen vacancy. Nano Res. 2022;16(4):4664-4670. doi: 10.1007/s12274-022-5117-5
- Mu J, Gao XW, Yu T, et al. Ambient electrochemical ammonia synthesis: From theoretical guidance to catalyst design. Adv Sci. 2024;11(15):e2308979. doi: 10.1002/advs.202308979
- Wang Y, Cheng W, Yuan P, et al. Boosting nitrogen reduction to ammonia on FeN4 sites by atomic spin regulation. Adv Sci. 2021;8(20):2102915. doi: 10.1002/advs.202102915
- Jeon IY, Zhang S, Zhang L, et al. Edge‐selectively sulfurized graphene nanoplatelets as efficient metal‐free electrocatalysts for oxygen reduction reaction: The electron spin effect. Adv Mater. 2013;25(42):6138-6145. doi: 10.1002/adma.201302753
- Yang Y, Zhang L, Hu Z, et al. The crucial role of charge accumulation and spin polarization in activating carbon‐based catalysts for electrocatalytic nitrogen reduction. Angew Chem Int Ed Engl. 2020;59(11):4525-4531. doi: 10.1002/anie.201915001
- Zhang Y, Wang X, Liu T, et al. Charge and spin communication between dual metal single-atom sites on C2N sheets: Regulating electronic spin moments of Fe atoms for N2 activation and reduction. J Mater Chem A. 2022;10(44):23704-23711. doi: 10.1039/d2ta06574f
