AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025430181
RESEARCH ARTICLE

Optimization of solar chimney performance through CFD modelling and parametric experimental design

Alberto Hananel1* Rodolfo Garcia1 Alejandro Vera1
Show Less
1 Department of Engineering, Faculty of Engineering, Santo Toribio de Mogrovejo Catholic University, Chiclayo, Peru
Received: 21 October 2025 | Revised: 20 November 2025 | Accepted: 27 November 2025 | Published online: 8 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This study presents a detailed parametric evaluation of solar chimney performance by combining computational fluid dynamics (CFD) simulations with advanced design-of-experiments (DOE) techniques. The analysis focuses on the effects of chimney height, collector-to-chimney AR, chimney geometry, and construction material under realistic environmental conditions. CFD modelling was used to compute airflow, temperature rise, and the resulting buoyancy driven updraft, while DOE procedures enabled the structured assessment of main effects and interaction effects across geometric factors. The results indicate that larger collector areas relative to chimney cross-section (high AR) and the use of a divergent chimney configuration significantly enhance updraft velocity and mechanical power generation. The configuration with a 30 m chimney and AR = 6 produced an updraft of approximately 12–13 m/s and a power output close to 15 kW, representing the highest performance among all simulated cases. Important interactions between AR and chimney geometry were identified, confirming that single-factor analyses may overlook coupled behaviours relevant to system optimization. These findings offer concise design guidance for enhancing solar chimney performance under local climatic conditions and confirm the feasibility of small, well-optimized systems as a clean energy option in high-irradiation regions. The analysis is based on steady-state simulations, which inherently simplify real conditions.

Graphical abstract
Keywords
Computational fluid dynamics (CFD)
Solar chimney power plant
Experimental design
Numerical simulation
Performance optimization
Renewable energy systems
Funding
This research was financially supported by the Santo Toribio de Mogrovejo Catholic University (USAT), Peru (005-2025-USAT-RTDO).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Patel SK, Prasad D, Ahmed, MR. Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Convers Manag. 2014;77:424–431. https://doi.org/10.1016/j.enconman.2013.09.056

 

  1. Torkfar A, Arefian A, Hosseini-Abardeh R, Bahrami M. Implementation of active and passive control strategies for power generation in a solar chimney power plant: a technical  evaluation  of  Manzanares  proto- type.  Renewable  Energy.  2023;216:118912. https://doi.org/10.1016/j.renene.2023.118912

 

  1. Rezaei L, Saeidi S, S´api A, et al. Efficiency improvement of the solar chimneys by insertion of hanging metallic tubes in the collector: experiment and computational fluid dynamics simulation. J Clean Prod. 2023;415:137692. https://doi.org/10.1016/j.jclepro.2023.137692

 

  1. Fallah SH, Valipour MS. Numerical investigation of a small scale sloped solar chimney power plant. Renewable Energy. 2022;183:1–11. https://doi.org/10.1016/j.renene.2021.10.081

 

  1. Nizeti´c   Ninic  N,  Klarin  B. Analysis and feasibility of implementing solar chimney  power  plants  in  the  Mediterranean region.   Energy. 2008;33(11):1680–1690. https://doi.org/10.1016/j.energy.2008.05.012

 

  1. , Kassaei F, Bagherzadeh A, Abedi M, B´enard A. Experimental Studies of Solar Chimneys: a Survey of performance, design, and applications for power generation. Energies. 2025;18(17). https://doi.org/10.1002/ep.11743

 

  1. Haaf W,  Friedrich  K,  Mayr  G,  Schlaich J.  Solar  chimneys  part  I:  Principle and construction  of  the  pilot  plant  in Manzanares. Int J Solar Energy. 1983;2(1):3–20. http://dx.doi.org/10.1080/01425918308909911

 

  1. Haaf W. Solar chimneys part II: Preliminary test results from the Manzanares pilot plant. Int J Sustain Energy. 1984;2(2):141–161. https://doi.org/10.1080/01425918408909921

 

  1. Cuce E, Cuce PM, Sen H. A thorough performance assessment  of  solar chimney power plants:  Case study for Manzanares. Clean Eng Technol. 2020;1:100026. https://doi.org/10.1016/j.clet.2020.100026

 

  1. Abdelmohimen MAH, Algarni SA. Numerical investigation of solar chimney power plants performance for Saudi Arabia weather conditions. Sustain Cities Soc. 2018;38:1–8. https://doi.org/10.1016/j.scs.2017.12.013

 

  1. Li W, Wei P, Zhou X. A cost–benefit analysis of power generation from commercial reinforced concrete solar chimney power plant. Energy Convers  Manag. 2014;79:104–113. https://doi.org/10.1016/j.enconman.2013.11.046

 

  1. Fasel  HF,  Meng  F,  Shams  E,  Gross A. CFD  analysis  for  solar  chimney power plants.   Solar  Energy. 2013;98:12–22. https://doi.org/10.1016/j.solener.2013.08.029

 

  1. Guo P-h, Li J-y, Wang Y. Numerical simulations of solar chimney power plant with radiation model. Renewable Energy. 2014;62:24–30. https://doi.org/10.1016/j.renene.2013.06.039

 

  1. Murena F, Gaggiano I, Mele B. Fluid dynamic  performances  of  a  solar chimney plant:  Analysis of experimental data and CFD    Energy.  2022;249:123702. https://doi.org/10.1016/j.energy.2022.123702

 

  1. Ming T, Liu W, Xu G. Analytical and numerical investigation of the solar chimney power plant systems. Int J Energy Res. 2006;30(11):861–873. https://doi.org/10.1002/er.1191

 

  1. Hu S, Leung DYC, Chan JCY. Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation.  Appl Energy. 2017;204:948–957. https://doi.org/10.1016/j.apenergy.2017.03.040

 

  1. Xu   Y,   Zhou      Performance of divergent-chimney   solar   power plants. Solar    Energy. 2018;170:379–387. https://doi.org/10.1016/j.solener.2018.05.068

 

  1. Nasraoui H, Driss Z, Kchaou H. Effect of the chimney design on the thermal characteristics in solar chimney power plant. J Therm  Anal  Calorim. 2020;140:2721–2732. https://doi.org/10.1007/s10973-019-09037-3

 

  1. Singh T, Kumar A. Numerical analysis of the divergent solar chimney power plant with a novel arc and fillet radius at the chimney base region. Renewable Energy. 2024;228:120504. https://doi.org/10.1016/j.renene.2024.120504

 

  1. Vieira RS, Petry AP, Rocha LAO, Isoldi LA, Dos Santos ED. Numerical evaluation of a solar chimney geometry for different ground temperatures by means of constructal design. Renewable Energy. 2017;109:222–234. https://doi.org/10.1016/j.renene.2017.03.007

 

  1. Arzpeyma  M,  Mekhilef  S,  Newaz KMS, et al. Solar chimney power plant and its correlation  with  ambient  wind  J Therm  Anal  Calorim. 2020;141(2):649–668. https://doi.org/10.1007/s10973-019-09065-z

 

  1. Bagheri S,  Hassanabad  Numerical and  experimental  investigation  of  a novel vertical solar chimney power plant for renewable  energy  production  in  urban areas.  Sustain  Cities  Soc. 2023;96:104700. https://doi.org/10.1016/j.scs.2023.104700

 

  1. Mebarki A, Sekhri A, Assassi A, Hanafi A, Marir B. CFD analysis of solar chimney power plant: Finding a relationship between model minimization and its performance for use in urban areas. Energy Reports. 2022;8:500–513. https://doi.org/10.1016/j.egyr.2021.12.008

 

  1. Canada     RETScreen® Clean Energy     Management     Software. https://natural-resources.canada.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465

 

  1. Group WB, Denmark (DTU) TU. Global Solar Atlas. https://globalwindatlas.info/es

 

  1. Sharon H. A detailed review on sole and hybrid solar chimney based sustainable ventilation, power generation, and potable water production systems. En Nex. 2023;10:100184. https://doi.org/10.1016/j.nexus.2023.100184

 

  1. Behera BK, Sahoo SS, Kumar S. Technology, design, and performance of solar chimney power plants: An updated and thorough review. Int J Renew Energy Res. 2024;22(9):1816- 1849  (Published  online  28  Dec  2024). https://doi.org/10.1080/15435075.2024.2446492

 

  1. Mandal DK, Gupta KK, Biswas N, Manna NK, Santra  S,  Benim    Optimization of  hybrid  solar  chimney  power  plants (HSCPPs):  A review of multi-objective approaches.  Applied  Energy. 2025;396:126214. https://doi.org/10.1016/j.apenergy.2025.126214

 

  1. Hachicha AA, Abo-Zahhad EM, Masmoudi M, Said  Z,  Rahman  Techno-Economic evaluation  and  multi-objective  optimization of a filter equipped solar chimney system.  Renewable  Energy. 2024;237:121452. https://doi.org/10.1016/j.renene.2024.121452

 

  1. Ferziger JH, Peri´c M. Computational Methods for Fluid Dynamics. Berlin, Heidelberg: Springer- Verlag Berlin Heidelberg3 ed. 2002. https://doi.org/10.1007/978-3-642-56026-2

 

  1. Kr¨oger DG, Blaine D. Analysis of the driving potential of a solar chimney power plant. J R&D . 1999;15:85–94. Accessed 16 Oct. 2025.

 

  1. POWER NASA Project. The Prediction of Worldwide Energy Resource (POWER); 2024. https://power.larc.nasa.gov/. NASA Applied Sciences Program within the Earth Science Division of the Science Mission Directorate.

 

  1. Montgomery   Design  and  analysis of  experiments,   8th  edition.  Environ Prog  Sustain  Energy. 2013;32(1):8-10. https://doi.org/10.1002/ep.11743

 

  1. Rahim M, Amin F, Shah K, Ahmad T. Some distance measures for Pythagorean cubic fuzzy sets: Application selection in optimal treatment for de- pression and anxiety. MethodsX. 2024;12:102678. https://doi.org/10.1016/j.mex.2023.102678

 

  1. Khan S, Shah K, Debbouche A, Zeb S, Antonov V. Solvability and Ulam-Hyers stability analysis for nonlinear piecewise fractional cancer dynamic systems. Phys Scr. 2024;99(2):025225. https://doi.org/10.1088/1402-4896/ace526

 

  1. Aldwoah K, Almalahi MA, Hleili M, Alqarni FA, Aly ES, Shah K. Analytical study of a modified-ABC fractional order breast cancer model. J Comput Appl Math. 2024;70(4):3685- 3716. https://doi.org/10.1007/s12190-024-02102-7

 

  1. Bakri B, Benguesmia H, Nasraoui H, Driss Z. Experimental study of solar chimney power plant un- der the climatic conditions of Sfax, Tunisia. J Adv Res Fluid Mech Therm Sci. 2023;101(1):207-214. https://doi.org/10.37934/arfmts.101.1.207214

 

  1. Titi MH, Mebarki A, Assassi A. Integration of the Manzanares solar chimney power plants in towers: Collector and building height configuration. Eng Technol Appl Sci Res. 2025;15(3):23002-23007. https://doi.org/10.48084/etasr.10594

 

  1. Tesfa TG, Alemu AG. Integrating geothermal waste heat  into  solar  chimney  power plant  design  for  improved    In Int J Green Energy (Springer). 2025;211-236. https://doi.org/10.1007/978-3-031-81730-412

 

  1. Elsayed AM, Gaheen OA, Aziz MA. Enhancing solar chimney power plant performance through innovative collector curved-guide vanes configurations. Renewable Energy. 2024;232:121127.https://doi.org/10.1016/j.renene.2023.121127
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing