Existence and uniqueness analysis of a fractional atmospheric system using Haar-based operational matrices
Understanding and accurately modeling the dynamics of climate-related processes is essential for predicting and mitigating the effects of global warming. This study introduces a fractional order atmospheric model that simultaneously captures the interactions among three key variables: permafrost thaw, atmospheric temperature, and greenhouse gas concentration. The model was formulated using the Atangana–Baleanu–Caputo fractional derivative, allowing for the inclusion of memory effects that are critical in climate dynamics. To solve the resulting nonlinear fractional differential equations, we constructed an operational matrix of the Atangana–Baleanu fractional integral operator based on Haar wavelets. Using Haar series expansions and operational matrices, the system was transformed into an objective function. This objective function was then minimized using differential evolution optimization to determine unknown Haar coefficients. The proposed method was validated against traditional numerical and predictor–corrector methods, with theoretical analysis confirming existence, uniqueness, and a provable upper bound for the approximation error. Numerical experiments under various parameter settings demonstrated the high accuracy, efficiency, and flexibility of the method. These results highlight the potential of fractional order modeling as a powerful framework for analyzing complex environmental systems and improving climate prediction
- Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Elsevier, Vol. 204. 2006, 1-523.doi: 10.1016/S0304-0208(06)80001-0
- Matlob MA, Jamali Y. The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: a primer. Crit Rev Biomed Eng. 2019;47(4):249-276. doi: 10.1615/CritRevBiomedEng.2018028368
- Iqbal MAB, Raza MZ, Khan A, Abdeljawad T, Almutairi DK. Advanced wave dynamics in the STF-mBBM equation using fractional calculus. Sci Rep. 2025;15(1):5803. doi: 10.1038/s41598-025-90044-w
- ¨ Ozt¨urk Z, Yousuf A, Bilgil H, Sorgun S. A fractional-order mathematical model to analyze the stability and develop a sterilization strategy for the habitat of stray dogs. Int J Optim Control Theory Appl. 2024;14(2):134-146.doi:10.11121/ijocta.1418
- Das A, Bhat R, Jolly MK. A Systems Biology View of Breast Cancer via Fractal Geometry and Fractional Calculus. 2025.doi:10.48550/arXiv.2505.07338
- Ayaz F, Heredag K. Fractional model for blood flow under MHD influence in porous and nonporous media. Int J Optim Control Theory Appl.2024;14(2):156-167. doi: 10.11121/ijocta.1497
- Chen Q, Sabir Z, Raja MAZ, Gao W, Baskonus HM. A fractional study based on the economic and environmental mathematical model. Alex EngJ. 2023;65(1):761-770. doi:10.1016/j.aej.2022.09.033
- Cheow YH, Ng KH, Phang C, Ng KH. The application of fractional calculus in economic growth modelling: an approach based on regression analysis. Heliyon. 2024;10(15):e35379. doi: 10.1016/j.heliyon.2024.e35379
- Arora S, Mathur T, Agarwal S, Tiwari K, Gupta P. Applications of fractional calculus in computer vision: a survey. Neurocomputing. 2022;489:407-428. doi: 10.1016/j.neucom.2021.10.122
- Kumar D, Baleanu D. Fractional calculus and its applications in physics. Front Phys. 2019;7(81):2. doi: 10.3389/fphy.2019.00081
- Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: Theoryand application to heat transfer model. Therm Sci. 2016;20(2):763-769. doi: 10.2298/TSCI160111018A
- Deressa CT. On the chaotic nature of the Rabinovich system through Caputo and Atangana–Baleanu–Caputo fractional derivatives. Adv Contin Discrete Models. 2022;66(2022). doi: 10.1186/s13662-022-03740-6
- Shaikh A, Qureshi S. Comparative analysis of riemann-liouville, Caputo-Fabrizio, and Atangana-Baleanu integrals. J Appl Math Compu tMech. 2022;21(1):91-101.doi: 10.17512/jamcm.2022.1.08
- Kneisel C, Hauk C, Fortier R, Moorman B. Advances in geophysical methods for permafrost investigations. Permafr Periglac Process.200;19(2):157-178. doi: 10.1002/ppp.616
- Obu J. How much of the Earth’s surface is under lain by permafrost? J Geophys Res Earth Surf. 2021;126(5):e2021JF006123. doi: 10.1029/2021JF006123
- Wu Q, Zhang T. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995to 2007. J Geophys Res Atmos. 2010;115(D9). doi: 10.1029/2009JD012974
- Harp DR, Atchley AL, Painter SL, et al. Effect of soil property uncertainties on permafrostthaw projections: a calibration-constrained analysis. Cryosphere. 2016;10(1):341-358.https://doi.org/10.5194/tc-10-341-2016
- Pan Y, Li L, Jiang X, et al. Earth’s changing global atmospheric energy cycle in response to climate change. Nat Commun. 2017;8(1):14367. doi: 10.1038/ncomms14367
- Mu CC, Abbott BW, Wu XD, et al. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau. Geophys Res Lett.2017;44(18):9389-9399. doi: 10.1002/2017GL075067
- Wang F, Li Z, Cheng Y, Li P, Wang B, Zhang H. Effect of thaw depth on nitrogen and phosphorus loss in runoff of loess slope. Sustainability.2022;14(3):1560. doi: 10.3390/su14031560
- Cui F, Chen J, Liu Z, Zhu W, Wang W, Zhang W. Prediction model of thermal thawing sensibility and thaw depth for permafrost embankment along the Qinghai-Tibet engineering corridor using MODIS data. J Sens. 2020;2020(1):8819476. https://doi.org/10.1155/2020/8819476
- Agrawal K, Kumar S, Akg¨ul A. An algorithm for numerical study of fractional atmospheric model using Bernoulli polynomials. J Appl Math Comput.2024;70(4):3101-3134. doi: 10.1007/s12190-024-02084-6
- Yeshwanth R, Kumbinarasaiah S. Dynamics and study of atmospheric model using new modified hermite wavelet collocation method. Iran J Sci.2025;49:1357-1372. doi: 10.1007/s40995-025-01811-3
- Naik MK, Baishya C, Veersha P, Baleanu D. Design of a fractional-order atmospheric model viaa class of ACT-like chaotic system and its sliding mode chaos control. An interdisciplinary. Chaos.2023, 33(2), 023129.doi: 10.1063/5.0130403
- Ahmed S, Jahan S, Shah K, Abdeljawad T. On computational analysis via fibonacci wavelet method for investigating some physical problems. J Appl Math Comput. 2025;71(1):531-550.doi: 10.1007/s12190-024-02251-9
- Khan A, Ghafoor A, Khan E, Shah K, Abdeljawad T. Solving scalar reaction diffusion equations with cubic non-linearity having time dependent coefficients by the wavelet method of lines. Netw Heterog Media. 2024;19(2):634-654.doi: 10.3934/nhm.2024028
- Mallat SG. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1989;11(7):674-693. doi: 10.1109/34.192463
- Mallat S. A Wavelet Tour of Signal Processing. Elsevier; 1999.
- Kumar S, Kumar R, Agarwal RP, Samet B.A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. Math Methods Appl Sci. 2020;43(8):5564-5578. doi: 10.1002/mma.6297
- Khan NA, Ali M, Ara A, Khan MI, Abdullaeva S, Waqar M., Optimizing pantograph fractional differential equations: a Haar wavelet operational matrix method. Partial Differ Equ Appl Math.2024;11:100774. doi: 10.1016/j.padiff.2024.100774
- Saeed U. Modified Haar wavelet method for linear and nonlinear Caputo fractional variable-order diffusion-type equations. Eng Comput. 2025:1-21. https://doi.org/10.1108/EC-02-2025-0174
- Zeb A, Kumar P, Djilali S, Erturk VS, Govindaraj V. Some novel analyses of the fractionalorderCOVID-19 model using the Haar wavelets method. Int J Appl Comput Math. 2025;11(2):36. doi: 10.1007/s40819-025-01857-2
- Baleanu D, Jajarmi A, Hajipour M. On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel. Nonlinear Dyn. 2018. 94, 397-414. doi: 10.1007/s11071-018-4367-y
- Abdeljawad T. A Lyapunov type inequality for fractional operators with non singular Mittag-Leffler kernel. J Inequal Appl. 2017;2017(130):1-11. doi: 10.1186/s13660-017-1400-5
- Younis M, Ahmad H, Asmat F, ˝ Oztrk M. Analyzing Helmholtz phenomena for mixed boundary values via graphically controlled contractions. Math Model Anal. 2025;30(2):342–361. doi: 10.3846/mma.2025.22546
- Yi M, Huang J. Wavelet operational matrix method for solving fractional differential equations with variable coefficients. Appl Math Comput.2014;230:383-394. doi: 10.1016/j.amc.2013.06.102
- ur Rehman M, Baleanu D, Alzabut J, Ismail M, Saeed U. Green–Haar wavelets method for generalized fractional differential equations. Adv Differ Equ. 2020;2020(515):1-25. doi: 10.1186/s13662-020-02974-6
- Maleknejad K, Mirzaee F, Abbasbandy S. Solving linear integro-differential equations system by using rationalized Haar functions method. Appl Math Comput. 2004;155(2):317-328. doi: 10.1016/S0096-3003(03)00778-1
- Chen CF, Hsiao CH. Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc Control Theory Appl.1997;144(1):87-94. doi: 10.1049/ip-cta:19970702
- Storn R. On the usage of differential evolution for function optimization. Proc North Am Fuzzy Inf Process. 1996:519-523. doi: 10.1109/NAFIPS.1996.534789.
- Chen Y, Yi M, Yu C. Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J Comput Sci. 2012;3(5):367-373.doi: 10.1016/j.jocs.2012.04.008
- Khan NA, Ali M, Ara A, Alraddadi I, Ahmad H. A Haar wavelet operational matrix method for fractional derivatives with non-singular kernel. Oper Res Forum. 2025;6(118). doi: 10.1007/s43069-025-00502-4
