AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025080032
RESEARCH ARTICLE

African vultures optimization-based hybrid neural network–proportional-integral-derivative controller for improved robot manipulator tracking

Bashra Kadhim Oleiwi1* Mohamed Jasim Mohamed1 Ahmad Taher Azar2,3 Saim Ahmed2,3* Ahmed Redha Mahlous2,3 Walid El-Shafai2,3,4
Show Less
1 Mechatronics and Robotics Engineering Department, College of Control and Systems Engineering, University of Technology, Baghdad, Iraq
2 College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
3 Automated Systems and Computing Lab (ASCL), Prince Sultan University, Riyadh, Saudi Arabia
4 Department of Electronics and Electrical Communication Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Monufia, Egypt
Received: 20 February 2025 | Revised: 29 June 2025 | Accepted: 2 July 2025 | Published online: 4 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Rigid robotic manipulators encounter several challenges in trajectory tracking control, including low accuracy and poor stability, resulting from uncertainties, external disturbances, and parameter variations. To address these issues, this study proposes two hybrid controllers that integrate the strengths of proportional-integral-derivative (PID) control with neural network (NN) methods for a three-link rigid robotic manipulator. These hybrid structures are the NN–PID controller and the self-tuning NN with PID (STNN–PID) controller. Their performance is compared against that of a conventional PID controller. To optimize control performance metrics, such as the integral time square error (ITSE), the parameters of the proposed controllers were tuned using the African vultures optimization algorithm. MATLAB was used to evaluate the effectiveness. Robustness tests were performed by varying the initial conditions, introducing external disturbances, and modifying system parameters. The NN–PID controller achieved ITSE values of 0.28919 × 10−4, 0.064321, and 0.001164, respectively, while the STNN–PID controller yielded values of 3.54549×10−4, 3.526199, and 0.883710, respectively. Moreover, when all these conditions were applied simultaneously, the NN–PID controller achieved an ITSE of 0.073968, compared to 2.672754 for the STNN–PID controller. These results demonstrate that the NN–PID controller outperforms the other controllers across all testing conditions. These findings confirm that the NN–PID controller is the most effective controller in terms of tracking accuracy, stability, and robustness across all test scenarios.

Keywords
3-Link rigid robotic manipulator
African vultures optimization algorithm
Neural network
Proportional-integral-derivative controller
Self-tuning proportional-integral-derivative controller
Trajectory tracking
Funding
This work is funded by Prince Sultan University, Riyadh, Saudi Arabia.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
  1. Elsisi M, Zaini HG, Mahmoud K, Bergies S, Ghoneim SSM. Improvement of trajectory tracking by robot manipulator based on a new cooperative optimization algorithm. 2021;9(24):3231. https://doi.org/10.3390/math9243231

 

  1. Baccouch M, Dodds S. A two-link robot manipulator: simulation and control design. Int J Robot Eng. 2020;5(2):1-17. https://doi.org/10.35840/2631-5106/4128

 

  1. Ahmed S, Ghous I, Mumtaz F. TDE based model- free control for rigid robotic manipulators under nonlinear friction. Sci Iran. 2024;31(2):137-148. https://doi.org/10.24200/sci.2022.57252.5141

 

  1. Wanigasekara C, Swain A, Almakhles D, Zhou L. Design of delta–sigma-based PID controller for networked wind energy conversion systems. IEEE Trans Ind Appl. 2022;58(1):879-889. https://doi.org/10.1109/TIA.2021.3126574

 

  1. Ahmed S, Azar AT, Tounsi M, Anjum Z. Trajectory tracking control of Euler–Lagrange systems using a fractional fixed-time method. Fractal Fract. 2023;7(5):355. https://doi.org/10.3390/fractalfract7050355

 

  1. Devaraj SV, Gunasekaran M, Sundaram E, et al. Robust queen bee assisted genetic algorithm (QBGA) optimized fractional order PID (FOPID) controller for not necessarily minimum phase power converters. IEEE Access. 2021;9:93331- 93337. https://doi.org/10.1109/ACCESS.2021.3091760

 

  1. Mohamed MJ, Oleiwi BK, Abood LH, Azar AT, Hameed IA. Neural fractional order PID controllers design for 2-link rigid robot manipulator. Fractal Fract. 2023;7(9):693. https://doi.org/10.3390/fractalfract7090693

 

  1. Saha A, Bhaskar MS, Almakhles D, Elmorshedy MF. Optimization of dual-stage controllers in renewable energy sources-based interconnected power systems through refinement of the African Vultures Optimization Algorithm. Ain Shams Eng J. 2024;15(11):103039. https://doi.org/10.1016/j.asej.2024.103039

 

  1. Mohammed A, Hossein M. Robust tracking control of flexible manipulators using hybrid back- stepping/nonlinear reduced-order active disturbance rejection control. ISA Trans. 2024;149:229- 236. https://doi.org/10.1016/j.isatra.2024.04.026

 

  1. Tlijani H, Jouila A, Nouri K. Wavelet neural network sliding mode control of two rigid joint robot manipulator. Adv Mech Eng. 2022;14(8):1-13. https://doi.org/10.1177/16878132221119886

 

  1. Bankole AT, Igbonoba EEC. Simulation-based novel hybrid proportional derivative/H-infinity controller design for improved trajectory tracking of a two-link robot arm. J Shanghai Jiaotong Univ (Sci). 2023;28:673-687. https://doi.org/10.1007/s12204-023-2660-5

 

  1. Esmail AA, Lee TS, My CA, Mohammed MQ.Robust P-H integrated controller for flexible link manipulator system in the presence of disturbance. J Appl Comput Mech. 2021;7(2):646-654. https://doi.org/10.22055/JACM.2020.35475.2668

 

  1. Villa-Tiburcio JF, Estrada-Torres JA, Hern´andez-Alvarado R, Montes-Mart´ınez JR, Bringas-Posadas D, Franco-Urquiza EA. ANN enhanced hybrid force/position controller of robot manipulators for fiber placement. 2024;13(7):105. https://doi.org/10.3390/robotics13070105

 

  1. Bankole AT, Igbonoba EEC. A novel hybrid proportional derivative/H-infinity controller design for improved trajectory tracking of a two-link robot arm. Res Sq. https://doi.org/10.21203/rs.3.rs-2193905/v1

 

  1. Fani D, Shahraki E. Two-link robot manipulator using fractional order PID controllers optimized by evolutionary algorithms. Biosci Biotech Res Asia. 2016;13(1):389-396. https://doi.org/10.13005/bbra/2075

 

  1. Anwaar H, Yixin Y, Ijaz S, Ashraf MA, Anwaar W. Fractional order based computed torque control of 2-link robotic arm. Adv Sci Technol Res J. 2018;12(1):273-284. https://doi.org/10.12913/22998624/85658

 

  1. Khalil I, Sharkawy AB. A hybrid PID control scheme for flexible joint manipulators and a comparison with sliding mode control. Ain Shams Eng J. 2018;9(4):3451-3457. https://doi.org/10.1016/j.asej.2018.01.004

 

  1. Vineet K, Rana KPS, Kler D. Efficient control of a 3-link planar rigid manipulator using self- regulated fractional-order fuzzy PID controller. Appl Soft Comput. 2019;82:105531. https://doi.org/10.1016/j.asoc.2019.105531

 

  1. Ahmad SG, El-Gohary MA, Elksas MS, Areed FG. Three link rigid manipulator control using improved neural network based PID controller. Int J Neural Netw Adv Appl. 2019;6:60-67.

 

  1. Kumar J, Kumar V, Rana KPS. Fractional- order self-tuned fuzzy PID controller for three- link robotic manipulator system. Neural Comput Appl. 2020;32(11):7235-7257. https://doi.org/10.1007/s00521-019-04215-8

 

  1. Tohma DH, Hamoudi AK. Design of adaptive sliding mode controller for uncertain pendulum system. Eng Technol J. 2021;39(3):355-369. https://doi.org/10.30684/etj.v39i3A.1546

 

  1. Zhu D, Du B, Zhu P, Chen S. Constant force PID control for robotic manipulator based on fuzzy neural network algorithm. 2020;2020:3491845. https://doi.org/10.1155/2020/3491845

 

  1. Sathish Kumar A, Naveen S, Vijayakumar R, et al. An intelligent fuzzy-particle swarm optimization supervisory-based control of robot manipulator for industrial welding applications. Sci Rep. 2023;13:8253. https://doi.org/10.1038/s41598-023-35189-2

 

  1. Gu¨mu¨¸s MS, C¸ akan A, Kalyoncu M. Cascade proportional derivative controller for a flexible link robot manipulator using the Bees Algorithm. AP- JESS. 2023;11(1):27-34. https://doi.org/10.21541/apjess.1084875

 

  1. Nohooji HR. Constrained neural adaptive PID control for robot manipulators. J Frank Inst. 2020;357(7):3907-3923. https://doi.org/10.1016/j.jfranklin.2019.12.042

 

  1. Chuyen TD, Doan HV, Minh PV, Thong VV. Design of robust adaptive controller for industrial robot based on sliding mode control and neural net- work. Int J Mech Eng Robot Res. 2023;12(3):183- 189.https://doi.org/10.18178/ijmerr.12.3.145-150

 

  1. Mohamed MJ, Oleiwi BK, Azar AT, Mahlous AR. Hybrid controller with neural network PID/FOPID operations for two-link rigid robot manipulator based on the zebra optimization algorithm. Front Robot AI. 2024;11:1386968. https://doi.org/10.3389/frobt.2024.1386968

 

  1. Chotikunnan P, Chotikunnan R. Dual design PID controller for robotic manipulator application. J Robot Control. 2023;4(1):23-34. https://doi.org/10.18196/jrc.v4i1.16990

 

  1. Mary AH, Al-Talabi A, Kara T, Muneam DS, Al- muhanna MY, Mayyahi LAK. Adaptive robust tracking control of robotic manipulator based on SMC and fuzzy control strategy. Al-Khwarizmi Eng J. 2024;20(1):63-75. https://doi.org/10.22153/kej.2024.11.002

 

  1. Coutinho AG, Hess-Coelho TA. Improving the performance of parallel robots by applying distinct hybrid control techniques. 2022;40(4):951-975. https://doi.org/10.1017/S0263574721000874

 

  1. Yahya RJ, Abbas NH. Adaptive optimal trajectory tracking control for four flexible joint robot manipulator. Int J Intell Eng Syst. 2022;15(2):1- 12. https://doi.org/10.22266/ijies2022.0430.01

 

  1. Cetinkaya MB, Yildirim K, Yildirim S¸. Trajectory analysis of 6-DOF industrial robot manipulators by using artificial neural networks. Sensors (Basel). 2024;24(13):4416. https://doi.org/10.3390/s24134416

 

  1. Al-Khayyt S. Tuning PID controller by neural network for robot manipulator trajectory tracking. Al-Khwarizmi Eng J. 2017;9(1):19-28.

 

  1. Adnan A, Karam HE. Optimal improved PID controller with GOA algorithm for single link human leg robot. J Eng Sustain Dev. 2022;26(2):103-110. https://doi.org/10.31272/jeasd.26.2.10

 

  1. Yadav S, Kumar S, Goyal M. PID tuning and stability analysis of hybrid controller for robotic arm using ZN, PSO, ACO, and GA. Int Rev Mech Eng. 2022;16(5):257-264. https://doi.org/10.15866/ireme.v16i5.21982

 

  1. Abdulameer HI, Mohamed MJ. Fractional order fuzzy PID controller design for 2-link rigid robot manipulator. Int J Intell Eng Syst. 2022;15(3):103-117. https://doi.org/10.22266/ijies2022.0630.10

 

  1. Lutfey OF. A wavelet functional link neural network controller trained by a modified sine cosine algorithm using the feedback error learning strategy. J Eng Sci Technol. 2020;15(1):709-727.

 

  1. Raafat SM, Raheem FA. Introduction to robotics- mathematical issues. In: Mathematical Advances Towards Sustainable Environmental Systems. Cham: Springer; 2017:261-289. https://doi.org/10.1007/978-3-319-43901-312

 

  1. Mohamed MJ, Oleiwi BK, Azar AT, Hameed IA. Coot optimization algorithm-tuned neural network-enhanced PID controllers for robust trajectory tracking of three-link rigid robot manipulator. 2024;10(13):e32661. https://doi.org/10.1016/j.heliyon.2024.e32661

 

  1. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng. 2021;158:107408. https://doi.org/10.1016/j.cie.2021.107408

 

  1. Abed MS, Lutfy OF, Al-Doori QF. Online path planning of mobile robots based on African vultures optimization algorithm in unknown environments. J Eur Syst Autom. 2022;55(3):405-412. https://doi.org/10.18280/jesa.550313

 

  1. Rajinikanth V, Razmjooy N. A comprehensive survey of meta-heuristic algorithms. In: Meta- heuristics and Optimization in Computer and Electrical Engineering. Lecture Notes in Electrical Engineering. Cham: Springer; 2023:1-29. https://doi.org/10.1007/978-3-031-42685-81

 

  1. Liu Q, Kosarirad H, Meisami S, Alnowibet KA, Hoshyar AN. An optimal scheduling method in IoT-fog-cloud network using combination of Aquila optimizer and African vultures optimization. 2023;11(4):1162. https://doi.org/10.3390/pr11041162

 

  1. Maashi M, Al-Hagery MA, Rizwanullah M, et al. Automated gesture recognition using African vulture optimization with deep learning for visually impaired people on sensory modality data. 2023;2(2):37-48. https://doi.org/10.57197/JDR-2023-001

 

  1. Maroufpoor S, Azadnia R, Bozorg-Haddad O. Stochastic optimization: stochastic diffusion search algorithm. In: Handbook of Probabilistic Models. Butterworth -Heinemann; 2020:437-448. https://doi.org/10.1016/B978-0-12-816514-0.00017-5
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing