A novel ninth-order root-finding algorithm for nonlinear equations with implementations in various software tools

Nonlinear phenomena are prevalent in numerous fields, including economics, engineering, and natural sciences. Computational science continues to advance through the development of novel numerical schemes and the refinement of existing ones. Ideally, these numerical systems should offer both high-order convergence and computational efficiency. This article introduces a new three step algorithm for solving nonlinear scalar equations, aiming to meet these criteria. The proposed approach requires six function evaluations per iteration and achieves ninth-order convergence. To demonstrate the efficiency of the technique, various numerical examples are shown. Implementations of the method are available in both Maple and Python, and it can be readily adapted for use in other computational environments.
- Traub JF. Iterative Methods for the Solution of Equations, vol. 312. Providence, RI, USA: American Mathematical Society; 1982.
- Rafiullah M. A fifth-order iterative method for solving nonlinear equations. Numer Anal Appl. 2011; 4: 239-243. https://doi.org/10.1134/S1995423911030062
- Ganji DD. The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer. Phys Lett A. 2006;355:337-341. https://doi.org/10.1016/j.physleta.2006.02.056
- Thota S, Shanmugasundaram P. On new sixth and seventh order iterative methods for solving non-linear equations using homotopy perturbation technique. BMC Res Notes. 2022;15:267. https://doi.org/10.1186/s13104-022-06154-5
- Abbasbandy S. Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method. Appl Math Comput. 2003; 145:887-893. https://doi.org/10.1016/S0096-3003(03)00282-0
- He JH, Wu XH. Variational iteration method: new development and applications. Comput Math Appl 2007;54:881-894. https://doi.org/10.1016/j.camwa.2006.12.083
- Tari H, Ganji DD, Babazadeh H. The application of He’s variational iteration method to nonlinear equations arising in heat transfer. Phys Lett A. 2007;363:213-217. https://doi.org/10.1016/j.physleta.2006.11.005
- Noor MA, Waseem M. Some iterative methods for solving a system of nonlinear equations. Comput Math Appl. 2009;57:101-106. https://doi.org/10.1016/j.camwa.2008.10.067
- Zafar F, Mir NA. A generalized family of quadrature based iterative methods. Gen Math. 2010;18:43-51.
- Thota S, Awad MM, Shanmugasundaram P. A derivative-free root-finding algorithm using exponential method and its implementation. BMC Res Notes. 2023;16:276. https://doi.org/10.1186/s13104-023-06554-1
- Thota S, Gemechu T, Ayoade AA. On new hybrid root-finding algorithms for solving transcendental equations using exponential and halley’s methods. Ural Math J. 2023; 9(1):176-186. http://dx.doi.org/10.15826/umj.2023.1.016
- Thota S, Gemechu T, Shanmugasundaram P. New algorithms for computing non-linear equations using exponential series. Palestine J Math. 2021; 10(1): 128-134.
- Thota S. A new root-finding algorithm using exponential series. Ural Math J. 2022;5(1):83-90. https://doi.org/10.15826/umj.2019.1.008
- Thota S. A New Hybrid Halley-False Position type Root Finding Algorithm to Solve Transcendental Equations. Istanbul International Modern Scientific Research Congress-III, 06-08 May 2022, Istanbul Gedik University, Istanbul, Turkey.
- Chen D, Argyros IK, Qian QS. A note on the Hal- ley method in Banach spaces. Appl Math Comput. 1983;58:215-224.
- Noor MA, Khan WA, Hussain A. A new modified Halley method without second derivatives for nonlinear equation. Appl Math Comput. 2007;189:1268-1273. https://doi.org/10.1016/j.amc.2006.12.011
- ‘Cordero A, Hueso JL, Mart´ınez E, Torregrosa JR. A modified Newton–Jarratt’s composition. Numer Algorithms. 2010; 55:87–99. https://doi.org/10.1007/s11075-009-9359-z
- Thota S, Ayoade AA. A new numerical algorithm to compute a root of non-linear equations using exponential method. interplay of fractals and complexity in mathematical modelling and physical patterns. In: ISMAFDS 2023. Cham: Springer; 2025. https://doi.org/10.1007/978-3-031-58641-528
- Noor MA, Noor KI, Al-Said E, Waseem M. Some new iterative methods for nonlinear equations. Math Probl Eng . 2010; 198943. https://doi.org/10.1155/2010/198943
- Noor MA, Noor KI. Three-step iterative methods for nonlinear equations. Appl Math Comput. 2006; 183:322-327. https://doi.org/10.1016/j.amc.2006.05.055
- Shah FA, Noor MA, Waseem M. Some second- derivative-free sixth-order convergent iterative methods for non-linear equations. Maejo Int J Sci Technol. 2016; 10(01):79-87. https://doi.org/10.14456/mijst.2016.7
- Abro HA, Shaikh MM. A new time-efficient and convergent nonlinear solver. Appl Math Comput. 2019; 355:516-536. https://doi.org/10.1016/j.amc.2019.03.012
- Torregrosa JR, Argyros IK, Chun C, Cordero A, Soleymani F. Iterative methods for nonlinear equations or systems and their applications 2014. J Appl Math. 2014; 2014: 293263. https://doi.org/10.1155/2014/293263
- Darvishi MT, Barati A. A third-order Newton- type method to solve systems of nonlinear equations. Appl Math Comput. 2007; 187:630-635. https://doi.org/10.1016/j.amc.2006.08.080
- Qureshi S, Ramos H, Soomro AK. A new non- linear ninth-order root-finding method with error analysis and basins of attraction. 2021;9(16):1996. https://doi.org/10.3390/math9161996
- Okawa H, Fujisawa K, Yamamoto Y, et al. The W4 method: a new multi-dimensional root- finding scheme for nonlinear systems of equations. Appl Numer Math. 2023; 183: 157-172. https://doi.org/10.1016/j.apnum.2022.08.019
- Thota S, Gopisairam T. On a symbolic method for second-order boundary value problems over al- gebras. Int J Appl Math. 2024;37(6):577-590. http://dx.doi.org/10.12732/ijam.v37i6.1
- Srivastav VK, Thota S, Kumar M. A new trigonometrical algorithm for computing real root of non- linear transcendental equations. Int J Appl Com- put Math. 2019; 5:44. https://doi.org/10.1007/s40819-019-0600-8
- Thota S, Krishna CB, Ayoade AA, Bikku T. On a new hybrid root-finding algorithm for solving nonlinear equations with implementation in excel and maple. J Basic Sci. 2024; 24(7): 270-277. https://doi.org/10.37896/JBSV24.7/3250
- Naseem A, Rehman MA, Abdeljawad T. A novel root-finding algorithm with engineering applications and its dynamics via computer technology. IEEE Access. 2022;10:19677-19684. https://doi.org/10.1109/ACCESS.2022.3150775
- Thota S, Srivastav VK. Quadratically convergent algorithm for computing real root of non- linear transcendental equations. BMC Res Notes. 2018;11:909. https://doi.org/10.1186/s13104-018-4008-z
- Etesami R, Madadi M, Mashinchi M, Ganjoei RA. A new method for rooting nonlinear equations based on the Bisection method. MethodsX 2021;8:101502. https://doi.org/10.1016/j.mex.2021.101502
- Thota S. A numerical algorithm to find a root of non-linear equations using householder’s method. Int J Adv Appl Sci. 2021; 10(2): 141-148. http://doi.org/10.11591/ijaas.v10.i2.pp141-148
- Chueca-D´ıez F, Gan˜´an-Calvo AM. A fast numerical algorithm for finding all real solutions to a system of N nonlinear equations in a finite do- main. Numer Algor https://doi.org/10.1007/s11075-024-01908-7
- Naseem A, Rehman MA, Abdeljawad T. Real- world applications of a newly designed root- finding algorithm and its polynomiography. IEEE Access. 2021;9: 160868-160877. https://doi.org/10.1109/ACCESS.2021.3131498
- Aggarwal A, Pant S. Beyond newton: a new root-finding fixed-point iteration for nonlinear equations. 2020;13(4):78. https://doi.org/10.3390/a13040078
- Mittal SK, Panday S, J¨antschi L. Enhanced ninth-order memory-based iterative technique for efficiently solving nonlinear equations. 2024;12(22): 3490. https://doi.org/10.3390/math12223490
- Kalantari B, Hans Lee E. Newton–ellipsoid poly-nomiography. J Mathnd the Arts. 2019;13(4): 336-352. https://doi.org/10.1080/17513472.2019.1600959
- Iliev A, Kyurkchiev N. Nontrivial Methods in Numerical Analysis: Selected Topics in Numerical Analysis. Saarbrucken: LAP LAMBERT Aca- demic Publishing; 2010: 256. ISBN:978-3-8433- 6793-6.
- Ignatova B, Kyurkchiev N, Iliev A. Multipoint algorithms arising from optimal in the sense of Kung-Traub iterative procedures for numerical solution of nonlinear equations. Gen Math Notes. 2012;6(2): 45-79.
- Kyurkchiev N, Iliev A. On some multipoint methods arising from optimal in the sense of Kung- Traub algorithms. Int J Math Methods Models Biosci. 2013; 2(1):12-18.
- Hristov V, Iliev A, Kyurkchiev N. A note on the convergence of nonstationary finite–difference analogues. Comput Math Math Phys. 2005; 45:194-201.
- Thota, Krishna CB, Ayoade AA, Bikku T. On A New Hybrid Root-Finding Algorithm for Solving Nonlinear Equations with Implementation in Excel and Maple. J Basic Sci. 2024;24(7):270-277. https://doi.org/10.37896/JBSV24.7/3250
- Petkovic M, Neta B, Petkovic L, Dzunic J. Multipoint Methods for Solving Nonlinear Equations. Oxford, UK: Academic press; 2013.
- Gdawiec K. Fractal patterns from the dynamics of combined polynomial root finding method s. Nonlinear Dyn. 2017;90(4):2457-2479. https://doi.org/10.1007/s11071-017-3813-6
- Kang SM, Naseem A, Nazeer W, Munir M, Yong C. Polynomiography via modified Abbasbanday’s method. Int J Math Anal. 2017;11(3):133-149. https://www.researchgate.net/publication/ 299535865 POLYNOMIOGRAPHY VIA MODIFIED GOLBABAI AND JAVIDI’S METHOD
- Thota S, Krishna CB. A root finding algorithm for transcendental equations using hyperbolic tangent function. AIP Conf Proc. 2024;2971:060012. https://doi.org/10.1063/5.0195773