AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/ijocta.7096
RESEARCH ARTICLE

Modeling and analysis of the dynamics of an excessive gambling problem with modified fractional operator

Mulualem Aychluh1 D.L. Suthar2,3* Clemente Cesarano4 S.D. Purohit5
Show Less
1 Department of Mathematics, Samara University, Samara, Afar, Ethiopia
2 Department of Mathematics, Wollo University, Dessie, Ethiopia
3 Department of Mathematics, Saveetha School of Engineering (SIMATS), Thandalam, Chennai, Tamil Nadu, India
4 International Telematic University UNINETTUNO, Roma, Italy
5 Rajasthan Technical University, Kota, Rajasthan, India
Received: 6 December 2024 | Revised: 7 April 2025 | Accepted: 16 April 2025 | Published online: 5 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This work introduces a fractional-order model of gambling addiction using the modified Atangana-Baleanu-Caputo operator. We establish solution existence/uniqueness, derive the reproduction number R0, and analyze stability. Numerical results demonstrate how fractional order υ influences addiction dynamics. The model identifies key intervention parameters through sensitivity analysis. The optimal control strategy is proposed to reduce progression to addiction. These approaches provide new tools for understanding and managing problem gambling behaviors.

Keywords
Excessive gambling problem
Modified fractional operator
Numerical method
Fractional mathematical modeling
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Reith G. The Age of Chance: Gambling and Western Culture. New York: Routledge; 1999.

 

  1. Peter F, Nigel ET. The History of Problem Gambling. Springer: New York Heidelberg Dordrecht London; 2013http://doi.org/10.1007/978-1-4614-6699-4

 

  1. Skitch SA, Hodgins DC. (2004). Impulsivity, compulsivity and pathological gambling: an ex- ploratory study of pathological gambling as an impulsivity-compulsivity spectrum disorder. Int Gambl Stud. 2004;4(2):175–88.

 

  1. Zendle D, Meyer R, Over, H. (2019). Adolescents and loot boxes: links with problem gam- bling and motivations for purchase. R Soc Open Sci. 2019;6(6):190049. http://doi.org/10.1098/rsos.190049

 

  1. American Psychiatric Association [APA]. Diagnostic and Statistical Manual of Mental Disorders (4th ed., text revision (DSM-IV-TR)). Washing- ton, DC; 2000.

 

  1. Room R, Turner NE, Ialomiteanu A. Community effects of the opening of the Niagara Casino: a first report. 1999;94:1449–1466. http://doi.org/10.1046/j.1360-0443.1999.941014492.x

 

  1. Do TS, Lee YS. A differential equation model for the dynamics of youth gambling. Osong Public Health Res Perspect. 2014;5(4):233-241.

 

  1. Kong Y, Li T, Wang Y. (2021). Dynamics analysis of an online gambling spreading model on scale- free networks. Adv Differ Equ. 2021; 11(2021). https://doi.org/10.1186/s13662-020-03165-z

 

  1. Shaffer HJ, Korn DA. Gambling and related mental disorders: a public health anal- ysis. Annu Rev Public Health. 2002;23:171-212. https://doi.org/10.1146/annurev.publhealth.23.140532

 

  1. Young SL, Tae SD. A mathematical modeling approach to gambling among older adults. Appl Math Comput. 2013;221:403-410. https://doi.org/10.1016/j.amc.2013.05.075

 

  1. Weiwei L, Grace PL, Asha G, et al. Impulsivity trajectories and gambling in adolescence among urban male youth. 2013;108(4):780- 788. https://doi.org/10.1111/add.12049

 

  1. Brevers D, Cleeremans A, Tibboel H, et al. Reduced attentional blink for gambling-related stimuli in problem gamblers. J Behav Ther Exp Psy- chiatry. 2011;42(3):265–269. https://doi.org/10.1016/j.jbtep.2011.01.005

 

  1. Brown SL, Rodda S, Phillips JG. Differences be- tween problem and nonproblem gamblers in subjective arousal and affective valence amongst electronic gaming machine players. Addict Behav. 2004;29(9):1863–1867. https://doi.org/10.1016/j.addbeh.2004.03.030

 

  1. Gupta R, Derevensky J, Marget N. Coping strategies employed by adolescents with gambling problems. Child Adolesc Ment Health. 2004;9(3): 115–120. https://doi.org/10.1111/j.1475- 2004.00092.x

 

  1. Michalczuk R, Bowden-Jones H, Verdejo-Garc´ıa A, Clark L. Impulsivity and cognitive distortions in pathological gamblers attending the UK National Problem Gambling Clinic: a preliminary report. Psychol Med. 2011;41(12):2625–2635. https://doi.org/10.1017/s003329171100095x

 

  1. Sharpe L. A reformulated cognitive-behavioral model of problem gambling: a biopsychosocial perspective. Clin Psychol Rev. 2002;22(1):1–25. doi: 10.1016/s0272-7358(00)00087-8

 

  1. C˘at˘alin B. Understanding Your Game: A Mathematician’s Advice for Rational and Safe Gam- bling. PhilScience Press; 2022. ISBN 978-606- 9735-00-8

 

  1. Aychluh M, Suthar DL, Purohit SD. Analysis of the nonlinear Fitzhugh-Nagumo equation and its derivative based on the Rabotnov fractional exponential function. Partial Diff Equat Appl Math. 2024;11:100764. https://doi.org/10.1016/j.padiff.2024.100764

 

  1. Ndolane S. Existence, uniqueness, and stability analysis results for the SIR epidemic model with a fractional operator. In: Mathematical Methods in Medical and Biological Sciences; 2025:267-278. https://doi.org/10.1016/B978-0-44-328814-2.00020-5

 

  1. Suthar DL, Haile H, Mulualem A. Effect of vaccination on the transmission dynamics of COVID- 19 in Ethiopia. Results Phys. 2022;32:105022. https://doi.org/10.1016/j.rinp.2021.105022

 

  1. Baleanu D, Agarwal RP. Fractional calculus in the sky. Adv Differ Equat. 2021;117(2021):1-9. https://doi.org/10.1186/s13662-021-03270-7

 

  1. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Prog Fract Differ Applicat. 2015;1(2):73–85. http://dx.doi.org/10.12785/pfda/010201

 

  1. Elvin JM, Sekson S, Sanoe K. A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. Adv Diff Equat. 2019;200(2019):1-20. https://doi.org/10.1186/s13662-019-2138-9

 

  1. Atangana A, Baleanu D. New fractional derivatives with non-local and non-singular kernel: theory and applications to heat transfer model. Ther- mal Sci. 2016;20:763–769.

 

  1. Al-Refai M, Baleanu D. On an extension of the operator with Mittag-Leffler kernel. 2022;30(5):2240129. https://dx.doi.org/10.1142/S0218348X22501298

 

  1. Ndolane S. SIR epidemic model with Mit- tag–Leffler fractional derivative Author links open overlay    Chaos Sol Fractals. 2020;137:109833. https://doi.org/10.1016/j.chaos.2020.109833

 

  1. Zaid O. Numerical solutions of linear time- fractional advection-diffusion equations with modified Mittag-Leffler operator in a bounded do- main. Phys Scrip. 2024;99(1):015205. https://doi.org/10.1088/1402-4896/ad0fd0

 

  1. Matiur R, Mehmet Y, Muhammad A, Adnan S. Theoretical and numerical investigation of a modified ABC fractional operator for the spread of polio under the effect of vaccination. AIMS Bio- phys. 2024;11(1):97–120. https://doi.org/10.3934/biophy.2024007

 

  1. Hasib K, Jehad A, Dumitru B, Ghada A, & Mutti-Ur R. Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differen- tial equations with an application. AIMS Math. 2023;8(3):6609–6625. https://doi.org/10.3934/math.2023334

 

  1. Odibat Z, Baleanu D. New solutions of the fractional differential equations with modified Mittag-Leffler kernel. J Comput Nonlinear Dyn. 2023;18(9):18091007. https://doi.org/10.1115/1.4062747

 

  1. Khan H, Alzabut J, Alfwzan WF, Gulzar H. Nonlinear dynamics of a piecewise modified ABC fractional-Order leukemia model with symmetric numerical simulations. Symmetry. 2023;15(7):1338. https://doi.org/10.3390/sym15071338

 

  1. Khan H, Alzabut J, Gulzar H. Existence of solutions for hybrid modified ABC-fractional differential equations with p-Laplacian operator and an application to a waterborne disease model. Alexandria Eng J. 2023;70:665–672. https://doi.org/10.1016/j.aej.2023.02.045

 

  1. Aychluh M, & Ayalew M. The fractional power series method for solving the nonlinear Kuramoto- Sivashinsky equation. Int J Appl Comput Math. 2025;11(29):1-27. https://doi.org/10.1007/s40819-025-01850-9

 

  1. S¸uayip Y, Kara¸cayır M. An exponential Galerkin method for solutions of HIV infection model of CD4+ T-cells. Comput Biol Chem. 2017;67:205- 212. https://doi.org/10.1016/j.compbiolchem.2016.12.006

 

  1. Ayalew M, Mekash A, Aychluh M. Numerical approximation of space-fractional diffusion equation using Laguerre spectral collocation method. Int J Math Ind. 2025;2450029. https://doi.org/10.1142/S2661335224500291

 

  1. Al-Omari A, Schuttler HB, Arnold J, Taha T. Solving nonlinear systems of first order ordinary differential equations using a Galerkin finite element method. IEEE Access. 2013;1(2013):408- 417. https://doi.org/10.1109/ACCESS.2013.2269192

 

  1. Baleanu, D, Fernandez A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun Nonlinear Sci Numer Simulat. 2018;59:444–462. https://doi.org/10.1016/j.cnsns.2017.12.003

 

  1. Matignon D. Stability results for fractional differential equations with applications to control processing. Comput Eng Syst Appl Multi-conf. 1996;2:963-968.
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing