Fitting Intravoxel Incoherent Motion Model to Diffusion MR Signals of the Human Breast Tissue using Particle Swarm Optimization

[1] Le Bihan, D. & Lima,M. (2015). Diffusion magnetic resonance imaging: What water tells us about biological tissues. PLoS Biology, 13(7): e1002203. http://doi.org/10.1371/journal.pbio.1002203 .
[2] Pinker, K., Moy, L., Sutton, E.J., Mann, R.M., Weber, M., Thakur, S.B., Jochelson, M.S., Bago- Horvath, Z., Morris, E.A., Baltzer, P.A. & Helbich, T.H. (2018). Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging.Investigative Radiology. http://doi:10.1097/RLI.0000000000000465.
[3] Pasquier, D., Hadj Henni, A., Escande, A., Tresch, E., Reynaert, N., Colot, O., Lartigau, E. & Betrouni, N. (2018). Diffusion weighted MRI as an early predictor of tumor response to hypofractionated stereotactic boost for prostate cancer. Scientific Reports, 8, 10407. http://doi.org/10.1038/s41598- 018-28817-9.
[4] Keil, V. C., Mädler, B. , Gielen, G. H., Pintea, B. , Hiththetiya, K. , Gaspranova, A. R., Gieseke, J. , Simon, M. , Schild, H. H. & Hadizadeh, D. R.(2017). Intravoxel incoherent motion MRI in the brain: Impact of the fitting model on perfusion fraction and lesion differentiability. Journal of Magnetic Resonance Imaging, 46(4), 1187-1199.
[5] Barbieri, S., Donati,O.F., Froehlich, J.M. & Thoeny, H.C. (2016). Impact of the calculation algorithm on bi-exponential fitting of diffusion-weighted MRI in upper abdominal organs. Magnetic Resonance in Medicine, 75(5), 2175-2184.
[6] Marquardt, D.W. (1963). An algorithm for least- squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(1), 431-441.
[7] Coleman, T.F. & Li, Y. (1996). An interior, trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization, 6(1), 418- 445.
[8] Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, 1942-1945.
[9] Devraj Mandal, D., Chatterjee, A. & Maitra, M.(2014). Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach. Engineering Applications of Artificial Intelligence, 35(1), 199-214.
[10] Kaur, S. & Kaur, M. (2010) Medical image enhancement using particle swarm optimization. Artificial Intelligent Systems and Machine Learning, 2(5), 54-59.
[11] Lin, C.-L., Mimori, A. & Chen, Y.-W. (2012). Hybrid particle swarm optimization and its application to multimodal 3D medical image registration. Computational Intelligence and Neuroscience, 561406. http://doi.org/10.1155/2012/561406 .
[12] Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E. & Laval-Jeantet, M. (1986). MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 161(2), 401-417.
[13] Liu, C., Liang, C., Liu, Z., Zhang, S. & Huang, B.(2013). Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. European Journal of Radiology, 82(12): e782-9. http://doi:10.1016/j.ejrad.2013.08.006.
[14] Cho, G. Y., Moy, L., Zhang, J. L., Baete, S., Lattanzi, R., Moccaldi, M. & Sigmund, E.E. (2015). Comparison of Fitting Methods and b-Value Sampling Strategies for Intravoxel Incoherent Motion in Breast Cancer. Magnetic Resonance in Medicine, 74(4), 1077–1085.
[15] Harel, O. (2009). The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation. Journal of Applied Statistics, 36(10), 1109-1118.
[16] Zhou, T. & Han, D. (2008). A weighted least squares method for scattered data fitting. Journal of Computational and Applied Mathematics, 217(1), 56-63.
[17] While, P. T. (2017). A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI. Magnetic Resonance in Medicine, 78(6), 2373- 2387.