AccScience Publishing / IJOCTA / Volume 8 / Issue 2 / DOI: 10.11121/ijocta.01.2018.00568
RESEARCH ARTICLE

Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation

Esra Karatas Akg¨ul1*
Show Less
1 Department Mathematics, Faculty of Education, University of Siirt, Turkey
IJOCTA 2018, 8(2), 145–151; https://doi.org/10.11121/ijocta.01.2018.00568
Received: 16 December 2017 | Accepted: 8 February 2018 | Published online: 11 April 2018
© 2018 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

On the basis of a reproducing kernel Hilbert space, reproducing kernel functions for solving the coefficient inverse problem for the kinetic equation are given in this paper. Reproducing kernel functions found in the reproducing kernel Hilbert space imply that they can be considered for solving such inverse problems. We obtain approximate solutions by reproducing kernel functions. We show our results by a table. We prove the eciency of the reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation.

Keywords
Reproducing kernel functions
inverse problem for the kinetic equation
reproducing kernel Hilbert space
Conflict of interest
The authors declare they have no competing interests.
References

[1] Golgeleyen, F., and Amirov, A. (2011). On the ap- proximate solution of a coe伍cient inverse problem for the kinetic equation. Math. Commun. 16, 283-298.

[2] Perthame, B. (2014). Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. 41, 205-244.

[3] Zaremba, S. (1907). L’equation biharmonique et une classe remarquable de fonctions fondamentales har- moniques. Bulletin International l’Academia des Sci- ences de Cracovie, pages 147-196.

[4] Zaremba, S. (1908). Sur le calcul numerique des fonctions demandees dan le probleme de dirichlet et le probleme hydrodynamique. Bulletin International l’Academia des Sciences de Cracovie, 125-195.

[5] Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc., 68, 337-404.

[6] Bergman, S. (1950). The kernel function and confor- mal mapping. American Mathematical Society, New York.

[7] Mohammadi, M., Mokhtari, R., and Isfahani, F.T.(2014). Solving an inverse problem for a parabolic equation with a nonlocal boundary condition in the reproducing kernel space. Iranian Journal of Numer- ical Analysis and Optimization 4(1), 57-76.

[8] Cui, M., Lin, Y., and Yang, L. (2007). A new method of solving the coe伍cient inverse problem. Science in China Series A: Mathematics Apr., 50(4), 561-572.

[9] Xu, M.Q., and Lin, Y. (2016). Simplified reproduc- ing kernel method for fractional diferential equations with delay. Applied Mathematics Letters, 52, 156-161.

[10] Tang, Z.Q. and Geng, F.Z. (2016). Fitted reproducing kernel method for singularly perturbed delay initial value problems. Applied Mathematics and Computa- tion, 284, 169-174.

[11] Fardi, M., Ghaziani, R.K., and Ghasemi, M. (2016). The reproducing kernel method for some variational problems depending on indefinite integrals. Mathe- matical Modelling and Analysis, 21(3), 412-429.

[12] Wahba, G. (1974). Regression design for some equiva- lence classes of kernels. The Annals of Statistics 2(5), 925-934.

[13] Nashed, M. Z., and Wahba, G. (1974). Regulariza- tion and approximation of linear operator equations in reproducing kernel spaces. Bulltetin of the Ameri- can Mathematical Society,80(6), 1213-1218.

[14] Al e’damat, A.H. (2015). Analytical-numerical method for solving a class of two-point boundary value problems. International Journal of Mathemat- ical Analysis 9(40), 1987-2002.

[15] Inc, M., and Akg¨ul, A. (2014). Approximate solu- tions for MHD squeezing 丑uid 丑ow by a novel method. Boundary Value Problems, 2014:18.

[16] Inc, M., Akg¨ul, A., and Kilicman, A. (2013). Numeri- cal solutions of the second-order one-dimensional tele- graph equation based on reproducing kernel hilbert space method. Abstract and Applied Analysis, Article ID 768963, 13 pages.

[17] Akg¨ul, A., and Kilicman, A. (2015). Solving delay dif- ferential equations by an accurate method with in- terpolation. Abstract and Applied Analysis, Article ID 676939, 7 pages.

[18] Akg¨ul, A. (2015). New reproducing kernel functions. Mathematical Problems in Engineering, Article ID 158134, 10 pages.

[19] Inc., M., and Akg¨ul, A. (2014). Numerical solution of seventh-order boundary value problems by a novel method. Abstract and Applied Analysis, Article ID 745287, 9 pages.

[20] Boutarfa, B., Akg¨ul, A., and Inc, M. (2017). New approach for the Fornberg-Whitham type equations. Journal of Computational and Applied Mathematics, 312, 13-26.

[21] Sakar, M.G., Akg¨ul, A., and Baleanu, D. (2017). On solutions of fractional Riccati diferential equations. Advances in Diference Equations. 2017:39.

[22] Akg¨ul, A., and Grow, D. Existence of solutions to the Telegraph Equation in binary reproducing kernel Hilbert spaces, , Submitted.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing