AccScience Publishing / IJOCTA / Volume 7 / Issue 2 / DOI: 10.11121/ijocta.01.2017.00458
RESEARCH ARTICLE

The road disturbance attenuation for quarter car active suspension system  via a new static two-degree-of-freedom design

Yusuf Altun1*
Show Less
1 Department of Computer Engineering, Faculty of Engineerig, Duzce University, Turkey
IJOCTA 2017, 7(2), 142–148; https://doi.org/10.11121/ijocta.01.2017.00458
Received: 15 February 2017 | Accepted: 13 April 2014 | Published online: 13 June 2017
© 2017 by the Research Article. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The main aim of this paper is to attenuate the effects of the road disturbance on the  quarter-car active suspension system (ASS) for the passenger comfort by using  design. Therefore, a new static disturbance compensator is proposed by using  linear matrix inequality method such that the disturbance compensator and  feedback controller are simultaneously designed for the disturbances in the linear  time-invariant systems, which are measurable or predictable. They have static  structure, and the disturbance compensator is designed on the feedforward path.  The design is applied against the road disturbance affecting the quarter car ASS.  The effectiveness of the design is demonstrated with the simulations.

Keywords
Active suspension
Quarter car
The road disturbance rejection
feedforward compensation
Conflict of interest
The authors declare they have no competing interests.
References

[1] Adam, E. J. and Marchetti, J. L., Designing and  tuning robust feedforward controllers, Computers  and Chemical Engineering, 28(9) 1899–1911 (2004).

[2] Méndez-Acosta, H. O., Campos-Delgado, D. U., Femat, R. and González-Alvarez, V., A robust  feedforward/feedback control for an anaerobic  digester, Computers & Chemical Engineering, 29  (7), 1613–1623 (2005).

[3] Peng, C., Zhang, Z., Zou, J., Li, K. and Zhang, J., Internal model based robust inversion feedforward  and feedback 2DOF control for LPV system with  disturbance, Journal of Process Control, 23, (10),  1415–1425 (2013).

[4] Guzmán, J. L., Hägglund, T., Veronesi, M. and  Visioli, A., Performance indices for feedforward  control, Journal of Process Control, 26, 26–34,  (2015).

[5] Rodríguez, C., Normey-Rico, J. E., Guzmán, J. L. and Berenguel, M., On the filtered Smith predictor  with feedforward compensation, Journal of Process  Control, 41, 35–46, (2016).

[6] Graichen, K., Treuer, M. and Zeitz, M., Swing-up of  the double pendulum on a cart by feedforward and  feedback control with experimental validation, Automatica, 43(1), 63–71 (2007).

[7] Jin, N., Wang, X., Gao, H. and Liu, J., Sliding mode  based speed regulating of PMSM MTPA control  system for electrical vehicles, in Electronic and  Mechanical Engineering and Information  Technology (EMEIT), 2011 International  Conference on, 2, 987–992 (2011).

[8] Babazadeh, M. and Karimi, H., A robust twodegree-of-freedom control strategy for an islanded  microgrid, IEEE Transactions on Power Delivery,  28(3), 1339–1347 (2013).

[9] Altun, Y. and Gulez, K., Linear parameter varying  feedforward control synthesis using parameterdependent Lyapunov function, Nonlinear Dynamics,  78(4), 2293–2307 (2014).

[10] Altun, Y., Gulez, K. and Mumcu, T. V., Static LPV  feedforward controller synthesis for Linear  Parameter Varying systems, Control Conference  (ASCC), 9th Asian. 1–4 (2013).

[11] Alma, M., Martinez, J. J., Landau, I. D. and Buche,  G., Design and Tuning of Reduced Order H-Infinity  Feedforward Compensators for Active Vibration  Control, IEEE Transactions on Control Systems  Technology, 20(2), 554–561 (2012).

[12] Zhang, J., Xu, H., Zou, Q. and Peng, C., Inversionbased robust feedforward–feedback two-degree-offreedom control approach for multi-input multioutput systems with uncertainty, IET Control Theory& Applications, 6(14), 2279–2291 (2012).

[13] Alvarez-Sánchez, E., A Quarter-Car Suspension  System: Car Body Mass Estimator and Sliding Mode  Control, Procedia Technology, 7, 208–214 (2013).

[14] Foda, S. G., Fuzzy control of a quarter-car  suspension system, in Proceedings of the  International Conference on Microelectronics, ICM,  vol. 2000–October, 231–234 (2000).

[15] Van Der Sande, T. P. J., Gysen, B. L. J., Besselink,  I. J. M., Paulides, J. J. H., Lomonova, E. A. and  Nijmeijer, H., Robust control of an electromagnetic  active suspension system: Simulations and  measurements, Mechatronics, 23(2), 204–212 (2013).

[16] Chen, X. and Tomizuka, M., Selective model  inversion and adaptive disturbance observer for  time-varying vibration rejection on an activesuspension benchmark, European Journal of  Control, 19(4), 300–312 (2013).

[17] Pan, H., Jing, X. and Sun, W., Robust finite-time  tracking control for nonlinear suspension systems  via disturbance compensation, Mechanical Systems  and Signal Processing, 88, 49–61 (2017).

[18] Karimi, A. and Emedi, Z., H∞ gain-scheduled  controller design for rejection of time-varying  narrow-band disturbances applied to a benchmark  problem, European Journal of Control, 19(4), 279– 288 (2013).

[19] Choi, H. D., Ahn, C. K., Lim, M. T. and Song, M.  K., Dynamic output-feedback H∞ control for active  half-vehicle suspension systems with time-varying  input delay, International Journal of Control,  Automation and Systems, 14(1), 59–68 (2016).

[20] Shukla, P., Ghodki, D., Manjarekar, N. S., and  Singru, P. M., A Study of H infinity and H2 synthesis  for Active Vibration Control, IFAC-PapersOnLine,  49(1), 623–628 (2016).

[21] Wang, G., Chen, C. and Yu, S., Optimization and  static output-feedback control for half-car active  suspensions with constrained information, Journal  of Sound and Vibration, 378, 1–13 (2016).

[22] Sun, W., Li, J., Zhao, Y. and Gao, H., Vibration  control for active seat suspension systems via  dynamic output feedback with limited frequency  characteristic, Mechatronics, 21(1), 250–260 (2011).

[23] Ghazaly, N. M., Ahmed, A. E. N. S., Ali, A. S. and  El-Jaber, G. T. A., H∞ control of active suspension  system for a quarter car model, International  Journal of Vehicle Structures and Systems, 8(1), 35– 40 (2016).

[24] Han, S. Y., Chen, Y. H., Ma, K., Wang, D., Abraham, A. and Liu, Z. G., Feedforward and  feedback optimal vibration rejection for active  suspension discrete-time systems under in-vehicle  networks, in 2014 6th World Congress on Nature  and Biologically Inspired Computing, NaBIC 2014,  139–144 (2014).

[25] Boyd, S. P., El Ghaoui, L., Feron, E. and  Balakrishnan, V., Linear matrix inequalities in  system and control theory, 15th SIAM (1994).

[26] Löfberg, J., Automatic robust convex programming, Optimization Methods and Software, 27(1), 115–129 (2012).

[27] Labit, Y., Peaucelle, D. and Henrion, D., SEDUMI  INTERFACE 1.02: A tool for solving LMI problems  with SEDUMI, in 2002 IEEE International  Symposium on Computer Aided Control System  Design, CACSD 2002 - Proceedings, 272–277 (2002)

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing