AccScience Publishing / IJOCTA / Volume 7 / Issue 1 / DOI: 10.11121/ijocta.01.2017.00300
RESEARCH ARTICLE

A stochastic location and allocation model for critical items to response  large-scale emergencies: A case of Turkey

Erkan Celik1 Nezir Aydin2* Alev Taskin Gumus2
Show Less
1 Department of Industrial Engineering, Munzur University, Turkey
2 Department of Industrial Engineering, Yildiz Technical University, Turkey
Received: 31 January 2016 | Accepted: 22 July 2016 | Published online: 11 October 2016
© 2016 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper aims to decide on the number of facilities and their locations,  procurement for pre and post-disaster, and allocation to mitigate the effects of  large-scale emergencies. A two-stage stochastic mixed integer programming  model is proposed that combines facility location- prepositioning, decisions on  pre-stocking levels for emergency supplies, and allocation of located distribution  centers (DCs) to affected locations and distribution of those supplies to several  demand locations after large-scale emergencies with uncertainty in demand.  Also, the use of the model is demonstrated through a case study for  prepositioning of supplies in probable large-scale emergencies in the eastern and  southeastern Anatolian sides of Turkey. The results provide a framework for  relief organizations to determine the location and number of DCs in different  settings, by using the proposed model considering the main parameters, as;  capacity of facilities, probability of being affected for each demand points,  severity of events, maximum distance between a demand point and distribution  center.

Keywords
Emergency response
facility location
large scale emergencies
two stage stochastic programming
Conflict of interest
The authors declare they have no competing interests.
References

[1] Murali, P. Ordóñez, F. & Dessouky, M.M.,  “Facility location under demand uncertainty:  Response to a large-scale bio-terror attack”, SocioEconomic Planning Sciences, vol. 46 No. 1, pp. 78- 87(2012).

[2] Sheu, J. B., “An emergency logistics distribution  approach for quick response to urgent relief  demand in disasters”, Transportation Research  Part E: Logistics and Transportation Review, Vol.  43 No. 6, pp. 687-709 (2007).

[3] Jia, H. Ordonez, F. & Dessouky, M., “A modeling  framework for facility location of medical services

[4] Jia, H. Ordonez, F. & Dessouky, M., “Solution  approaches for facility location of medical supplies  for large-scale emergencies”, Computers &  Industrial Engineering, Vol. 52, pp. 257-276 (2007b).

[5] Rawls, C.G. & Turnquist, M.A., “Pre-positioning of emergency supplies for disaster  response”, Transportation Research Part B:  Methodological, Vol. 44 No. 4, pp. 521-534 (2010).

[6] Megiddo N. & Supowit K.J., “On the complexity of  some common geometric location problems”, SIAM  Journal on Computing, Vol. 13, pp. 182-196 (1984).

[7] Haugen, K.K. Løkketangen, A. & Woodruff, D.L.,  “Progressive hedging as a meta-heuristic applied to  stochastic lot-sizing”, European Journal of  Operational Research, Vol. 132 No. 1, pp. 116-122 (2001).

[8] Birge, J.R. & Louveaux, F., “Introduction to  stochastic programming”, Springer-Verlag, New  York (1997).

[9] Aydin, N., and Murat, A.. “A swarm intelligence  based sample average approximation algorithm for  the capacitated reliable facility location problem”,  International Journal of Production Economics,  Vol 145 No. 1, pp. 173-183 (2013).

[10] Ayvaz, B., Bolat, B., & Aydin, N.. “Stochastic  reverse logistics network design for waste of  electrical and electronic equipment”. Resources,  Conservation and Recycling, Vol 104, pp. 391-404 (2015).

[11] Balcik, B., & Beamon, B. M.. “Facility location in  humanitarian relief”, International Journal of  Logistics, Vol 11 No. 2, pp. 101-121 (2008).

[12] Altay, N. Green, W.G., “OR/MS research in  disaster operations management”, European  Journal of Operational Research, Vol. 175 No.1,  pp. 475-493 (2006).

[13] Galindo, G. & Batta, R., “Review of Recent  Developments in OR/MS Research in Disaster  Operations Management”, European Journal of  Operational Research, Vol. 230 No. 2, pp. 201-211 (2013).

[14] Caunhye, A.M. Nie, X. & Pokharel, S.,  “Optimization models in emergency logistics: A  literature review”, Socio-Economic Planning  Sciences, Vol. 46 No. 1, pp.4-13 (2012).

[15] Toregas, C. Swain, R. ReVelle, C. & Bergman, L.,  “The location of emergency service  facilities”, Operations Research, Vol. 19 No. 6, pp.  1363-1373 (1971).

[16] Psaraftis, H.N. Tharakan, G.G. & Ceder, A.,  “Optimal response to oil spills: the strategicdecision case”, Operations Research, Vol. 34 No.  2, pp. 203-217 (1986).

[17] Iakovou, E. Ip, C.M. Douligeris, C. & Korde, A.,  “Optimal location and capacity of emergency  cleanup equipment for oil spill  response”, European Journal of Operational  Research, Vol. 96 No. 1, pp. 72-80 (1997).

[18] Huang, R. Kim, S. & Menezes, M.B., “Facility  location for large-scale emergencies”, Annals of  Operations Research, vol. 181 No. 1, pp. 271-286 (2010).

[19] Shui, W. Ye, H. Zhao, J. & Liu, M., “A Dynamic  Multiple Objective Model of Location Problem of  Emergency Logistics Distribution Centers”,  Logistics, pp. 929-934 (2009).

[20] Yushimito, W.F. Jaller, M. & Ukkusuri, S., “A  Voronoi-based heuristic algorithm for locating  distribution centers in disasters”, Networks and  Spatial Economics, Vol. 12 No. 1, pp. 21-39 (2012).

[21] Duran, S. Gutierrez, M.A. & Keskinocak, P., “Prepositioning of emergency items for care  international”, Interfaces, Vol. 41 No. 3, pp. 223- 237 (2011).

[22] Rawls, C.G. & Turnquist, M.A., “Pre-positioning  planning for emergency response with service  quality constraints”, OR spectrum, Vol. 33 No. 3,  pp. 481-498 (2011).

[23] Verma, A. & Gaukler, G.M., “A stochastic  optimization model for positioning disaster  response facilities for large-scale emergencies”,  Network Optimization, Springer Berlin Heidelberg,  pp. 547-552 (2011). 

[24] Döyen, A. Aras, & N. Barbarosoğlu, G., “A twoechelon stochastic facility location model for  humanitarian relief logistics”, Optimization Letters,  Vol. 6 No. 6, pp. 1123-1145 (2012).

[25] Hong, X. Lejeune, M.A. & Noyan, N., “Stochastic  Network Design for Disaster Preparedness”,  Optimization Online, pp. 1-31 (2012).

[26] Salmerón, J. & Apte, A. (2010), “Stochastic  optimization for natural disaster asset  prepositioning”, Production and Operations  Management, Vol. 19 No. 5, pp. 561-574.

[27] Lodree Jr, E.J. Ballard, K.N. & Song, C.H., “Prepositioning hurricane supplies in a commercial  supply chain”, Socio-Economic Planning Sciences,  Vol. 46 No.4, pp. 291-305 (2012).

[28] Campbell, A.M. & Jones, P.C., “Prepositioning  supplies in preparation for disasters”, European  Journal of Operational Research, Vol. 209 No.2,  pp. 156-165 (2011).

[29] Yushimito, W.F. & Ukkusuri, S.V., “A LocationRouting Approach for the Humanitarian PrePositioning Problem”, In 87th Annual Meeting ofthe Transportation Research Board, Washington,  DC (2007).

[30] Galindo, G. & Batta, R., “Prepositioning of  supplies in preparation for a hurricane under  potential destruction of prepositioned  supplies”, Socio-Economic Planning Sciences, Vol.  47 No.1, pp. 20-37 (2012).

[31] Mitsakis, E. Stamos I. Salanova Grau J.M. &  Aifadopoulou G., “Optimal allocation of  emergency response services for managing  disasters”, Disaster Prevention and Management,  Vol. 23 No. 4, pp. 329 – 342 (2014).

[32] Chang, M.S. Tseng, Y.L. & Chen, J.W., “A  scenario planning approach for the flood emergency  logistics preparation problem under  uncertainty”, Transportation Research Part E:  Logistics and Transportation Review 6, pp.737-754 (2007). , Vol. 43 No. 

[33] Mete, H.O. & Zabinsky, Z.B., “Preparing for  disasters: medical supply location and distribution”,  In Seattle, WA, pp. 1 Proceedings of the INFORMS conference -14 (2007). , 

[34] Mete, H.O. & Zabinsky, Z.B., “Stochastic  optimization of medical supply location and  distribution in disaster management”, International  Journal of Production Economics pp. 76-84 (2010). , Vol. 126 No. 1, 

[35] Gunnec, D. & Salman, F., “A two-stage multicriteria stochastic programming model for location  of emergency response and distribution centers”,  In International Network Optimization Conference(2007)

[36] Yi, W. Özdamar, L., “A dynamic logistics  coordination model for evacuation and support in  disaster response activities”, European Journal of  Operational Research, Vol. 179 No. 3, pp. 1177- 1193 (2007).

[37] Han, Y., Guan, X., & Shi, L., “Optimization based  method for supply location selection and routing in large-scale emergency material delivery”, IEEE  Transactions on Automation Science and  Engineering, Vol 8 No. 4, pp. 683-693 (2011).

[38] Bozorgi-Amiri, A. Jabalameli, M.S. Alinaghian, M.  and Heydari, M., “A modified particle swarm  optimization for disaster relief logistics under  uncertain environment”, The International Journal  of Advanced Manufacturing Technology, Vol. 60  No. 1-4, pp. 357-371 (2012).

[39] Naji-Azimi, Z., Renaud, J., Ruiz, A., & Salari, M..  “A covering tour approach to the location of  satellite distribution centers to supply humanitarian  aid”, European Journal of Operational Research,  Vol 222 No. 3, pp. 596-605 (2012).

[40] Lin, Y.H. Batta, R. Rogerson, P.A. Blatt, A. &  Flanigan, M., “Location of temporary depots to  facilitate relief operations after an earthquake”,Socio-Economic Planning Sciences, Vol. 46 No. 2,  pp. 112-123 (2012).

[41] Paul, J.A. & Hariharan, G., “Location-allocation  planning of stockpiles for effective disaster  mitigation”, Annals of Operations Research, Vol.  196 No. 1, pp. 469-490 (2012).

[42] Afshar, A., & Haghani, A., “Modeling integrated  supply chain logistics in real-time large-scale  disaster relief operations”, Socio-Economic  Planning Sciences, Vol 46 No. 4, pp. 327-338 (2012).

[43] Rawls, C.G. & Turnquist, M.A., “Pre-positioning  and dynamic delivery planning for short-term  response following a natural disaster”, SocioEconomic Planning Sciences, Vol. 46 No. 1, pp.  46-54 (2012).

[44] Rath, S., & Gutjahr, W. J., “A math-heuristic for  the warehouse location–routing problem in disaster  relief”, Computers & Operations Research, Vol 42,  pp. 25-39 (2014).

[45] Abounacer, R. Rekik, M. & Renaud, R., “An exact  solution approach for multi-objective location– transportation problem for disaster response”,  Computers & Operations Research, Vol. 41, pp.  83–93 (2014).

[46] Sheu, J. B., & Pan, C., “A method for designing  centralized emergency supply network to respond  to large-scale natural disasters”, Transportation  Research Part B: Methodological, Vol 67, pp. 284- 305 (2014).

[47] Verma, A., & Gaukler, G. M., “Pre-positioning  disaster response facilities at safe locations: An  evaluation of deterministic and stochastic modeling  approaches”, Computers & Operations Research, Vol 62, pp. 197-209 (2015).

[48] Salman, F. S., & Gül, S., “Deployment of field  hospitals in mass casualty incidents”, Computers &  Industrial Engineering, Vol 74, pp. 37-51 (2014).

[49] Caunhye, A. M., Li, M., & Nie, X., “A locationallocation model for casualty response planning  during catastrophic radiological incidents”, SocioEconomic Planning Sciences, Vol 50, pp. 32-44 (2015).

[50] Renkli, Ç., & Duran, S., “Pre-positioning disaster  response facilities and relief items”, Human and  Ecological Risk Assessment: An International  Journal, Vol 21 No. 5, pp. 1169-1185 (2015).

[51] Rath, S., Gendreau, M., & Gutjahr, W. J., “Bi‐ objective stochastic programming models for  determining depot locations in disaster relief  operations”, International Transactions in  Operational Research, DOI: 10.1111/itor.12163 (2015).

[52] Kılcı, F., Kara, B. Y., & Bozkaya, B., “Locating  temporary shelter areas after an earthquake: A casefor Turkey”, European Journal of Operational  Research, Vol 243 No. 1, pp. 323-332 (2015).

[53] Aydin, N., “A stochastic mathematical model to  locate field hospitals under disruption uncertainty  for large-scale disaster preparedness”, An  International Journal of Optimization and Control:  Theories & Applications (IJOCTA), Vol 6 No. 2,  pp. 85-102 (2016).

[54] Tofighi, S., Torabi, S. A., & Mansouri, S. A., “Humanitarian logistics network design under  mixed uncertainty”. European Journal of  Operational Research, Vol. 250 No.1, pp. 239-250 (2016).

[55] Sheu, J. B., “Dynamic relief-demand management  for emergency logistics operations under largescale disasters”, Transportation Research Part E:  Logistics and Transportation Review, Vol. 46 no. 1,  pp. 1-17 (2010).

[56] Chi, T.H. Yang, H. & Hsiao, H.M., “A new  hierarchical facility location model and genetic  algorithm for humanitarian relief”, 5th  International Conference on New Trends  in Information Science and Service Science (NISS)  IEEE, Vol. 2, pp. 367-374 (2011).

[57] Dantzig, G.B., “Planning under  uncertainty”, Annals of Operations Research, Vol.  85 pp.1-4, (1999).

[58] Google maps [online]. Available from:  https://maps.google.com. [accessed 16 September  2013].

[59] TUIK [online]. Available from:  http://www.tuik.gov.tr/UstMenu.do?metod=temelis t. [accessed 13 September 2013]. 

[60] Balcik, B. & Ak, D., “Supplier selection for  framework agreements in humanitarian  relief”, Production and Operations Management, Vol. 23 No.6, pp.1028-1071 (2013).

[61] KGM [online]. Available from:  http://www.kgm.gov.tr/Sayfalar/KGM/SiteEng/Roo t/MainPageEnglish.aspx. Republic of TurkeyGeneral Directorate of Highways (KGM) [accessed  16 September 2013].

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing