AccScience Publishing / IJOCTA / Volume 6 / Issue 1 / DOI: 10.11121/ijocta.01.2016.00254
APPLIED MATHEMATICS & CONTROL

Optimization of cereal output in presence of locusts

Nacima Moussouni1 Mohamed Aidene2
Show Less
1 University Mouloud Mammeri of Tizi-Ouzou, Faculty of Science, Department of Mathematics, L2CSP Laboratory
Received: 22 March 2015 | Published online: 27 January 2016
© 2016 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, we study a modelization of the evolution of cereal output production, controlled by adding fertilizers and in presence of locusts, then by adding insecticides. The aim is to maximize the cereal output and meanwhile minimize pollution caused by adding fertilizers and insecticides.

The optimal control problem obtained is solved theoretically by using the Pontryagin Maximum Principle, and then numerically with shooting method.

Keywords
Optimal control; optimization; Pontryagin maximum principal
Conflict of interest
The authors declare they have no competing interests.
References

[1] Chitour, Y. Jean, F. and Tr/elat, E., Singu- lar trajectories of driftless and control-a伍ne systems. In Proceedings of 44th IEEE CDC- ECC’05, S/eville, Spain, (2005).

[2] Chitour, Y. Jean, F. and Tr/elat, E., Propri/et/ees g/en/eriques des trajectoires sin-guli、eres, C. R. Acad. Sci. Paris, Ser. I, vol. 337, (2003).

[3] Chitour, Y., Jean, F., Tr/elat, E., Generic- ity results for singular curves. J. Di erential Geom., 73 (1), 45-73 (2006).

[4] Cressman, K., Dobson, H.M., Dir/ectives sur le criquet p、elerin: Annexes, Organisa- tion des nations unies pour l’alimentation et l’agriculture (2001).

[5] Frankowska, H., Regularity of minimizers and of adjoint states for optimal control prob- lems understate constraints. J. Convex Anal- ysis, 13, 299-328 (2006).

[6] Stoer, J., Bulirsh, R., Introduction to numer- ical analysis. Springer-Verlag, (2002).

[7] Ministry of Agriculture, Statistics (2006).

[8] Murray, J.D., Mathematical Biology: II. Spatial Models and Biomedical Applications, (2003).

[9] Moussouni, N., Aidene, M., An Algorithm for optimization of cereal output. Acta Applican- dae Mathematicae, 119, 113-127 (2012).

[10] Pontryaguin, L. et al., Mathematical theory of optimal processes. Moscou (1974).

[11] Sethi, S.P and Thompson, G.L. Optimal Control Theory: Applications to Manage- ment Science and Economics, Second Edi- tion, Springer (2000).

[12] Tr/elat, E., Contrˆole optimal: th/eorie et applications, Vuibert, Collection ”Math/ematiques Concr、etes” (2005).

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing