Optimization of cereal output in presence of locusts

In this paper, we study a modelization of the evolution of cereal output production, controlled by adding fertilizers and in presence of locusts, then by adding insecticides. The aim is to maximize the cereal output and meanwhile minimize pollution caused by adding fertilizers and insecticides.
The optimal control problem obtained is solved theoretically by using the Pontryagin Maximum Principle, and then numerically with shooting method.
[1] Chitour, Y. Jean, F. and Tr/elat, E., Singu- lar trajectories of driftless and control-a伍ne systems. In Proceedings of 44th IEEE CDC- ECC’05, S/eville, Spain, (2005).
[2] Chitour, Y. Jean, F. and Tr/elat, E., Propri/et/ees g/en/eriques des trajectoires sin-guli、eres, C. R. Acad. Sci. Paris, Ser. I, vol. 337, (2003).
[3] Chitour, Y., Jean, F., Tr/elat, E., Generic- ity results for singular curves. J. Di erential Geom., 73 (1), 45-73 (2006).
[4] Cressman, K., Dobson, H.M., Dir/ectives sur le criquet p、elerin: Annexes, Organisa- tion des nations unies pour l’alimentation et l’agriculture (2001).
[5] Frankowska, H., Regularity of minimizers and of adjoint states for optimal control prob- lems understate constraints. J. Convex Anal- ysis, 13, 299-328 (2006).
[6] Stoer, J., Bulirsh, R., Introduction to numer- ical analysis. Springer-Verlag, (2002).
[7] Ministry of Agriculture, Statistics (2006).
[8] Murray, J.D., Mathematical Biology: II. Spatial Models and Biomedical Applications, (2003).
[9] Moussouni, N., Aidene, M., An Algorithm for optimization of cereal output. Acta Applican- dae Mathematicae, 119, 113-127 (2012).
[10] Pontryaguin, L. et al., Mathematical theory of optimal processes. Moscou (1974).
[11] Sethi, S.P and Thompson, G.L. Optimal Control Theory: Applications to Manage- ment Science and Economics, Second Edi- tion, Springer (2000).
[12] Tr/elat, E., Contrˆole optimal: th/eorie et applications, Vuibert, Collection ”Math/ematiques Concr、etes” (2005).