AccScience Publishing / IJOCTA / Volume 5 / Issue 1 / DOI: 10.11121/ijocta.01.2015.00204
OPTIMIZATION & APPLICATIONS

An EPQ model with imperfect items using interval grey numbers

Erdal Aydemir1 Fevzi Bedir2 Gultekin Ozdemir1 Abdullah Eroglu3
Show Less
1 Department of Industrial Engineering, Suleyman Demirel University, Turkey
2 Department of Mechanical Engineering, Suleyman Demirel University, Turkey
3 Department of Business Administration, Suleyman Demirel University, Turkey
Received: 9 May 2014 | Published online: 18 September 2014
© 2014 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The classic economic production quantity (EPQ) model has been widely used to determine  the optimal production quantity. However, the analysis for finding an EPQ model has many  weaknesses which lead many researchers and practitioners to make extensions in several aspects on  the original EPQ model. The basic assumption of EPQ model is that 100% of manufactured products  are non-defective that is not valid for many production processes generally. 

The purpose of this paper is to develop an EPQ model with grey demand rate and cost values with  maximum backorder level allowed with the good quality items in units under an imperfect production  process. The imperfect items are considered to be low quality items which are sold to a particular  purchaser at a lower price and, the others are reworked and scrapped. A mathematical model is  developed and then an industrial example is presented on the wooden chipboard production process  for illustration of the proposed model.

Keywords
EPQ;grey system theory;inventory management;rework;imperfect items.
Conflict of interest
The authors declare they have no competing interests.
References

[1] Taft, E. W., The most economical production  lot. Iron Age, 101, 1410-1412 (1918).

[2] Salameh, M. K., Jaber, M. Y., Economic  production quantity model for items with  imperfect quality. International Journal of  Production Economics, 64, 59-64 (2000).

[3] Liao, J. J., On an EPQ model for deteriorating  items under permissible delay in payments.  Applied Mathematical Modelling, 31, 393-403 (2007).

[4] Darwish, M., EPQ model with varying setup  cost. International Journal of Production  Economics, 113, 297-306 (2008).

[5] Jaber, M. Y., Goyal, S. K., Imran, M.,  Economic production quantity model for items  with imperfect quality subject to learning  effects. International Journal of ProductionEconomics, 115, 143-150 (2008).

[6] Pentico, D. W., Matthew, J. D., Toews, C.,  The deterministic EPQ with partial  backordering: a new approach. Omega, 37,  624-636 (2009).

[7] Teng, J. T., Chang, C. T., Optimal  manufacturer’s replenishment policies in the  EPQ model under two levels of trade credit  policy. European Journal of Operational  Research, 195, 358-363 (2009).

[8] Mahata, G. C., An EPQ-based inventory  model for exponentially deteriorating items  under retailer partial trade credit policy in  supply chain. Expert Systems with  Applications, 39, 3537–3550 (2012).

[9] Rosenblatt, M. J., Lee, H. L., Economic  production cycles with imperfect production  processes. IEE Transactions, 18, 48-55 (1986).

[10] Kim, C. H., Hong, Y., An optimal production  run length in deteriorating production  processes. International Journal of Production  Economics, 58, 183-189 (1999).

[11] Hayek, P. A., Salameh, M. K., Production lot  sizing with the reworking of imperfect quality  items produced. Production Planning and  Control, 12(6), 584-590 (2001).

[12] Chiu, Y. P., Determining the optimal lot size  for the finite production model with random  defective rate, the rework process, and  backlogging. Engineering Optimization, 35(4),427-437 (2003).

[13] Papachristos, S., Konstantaras, I., Economic  ordering quantity models for items with  imperfect quality. International Journal of  Production Economics, 100, 148–154 (2006).

[14] Pan, J. C. H., Yang, M. F., Integrated  inventory models with fuzzy annual demand  and fuzzy production rate in a supply chain.  International Journal of Production Research,  46(3), 753-770 (2008).

[15] Chiu, S. W., Wang, S. L., Chiu, Y. S. P.,  Determining the optimal run time for EPQ  model with scrap, rework, and stochastic  breakdowns. European Journal of Operational  Research, 180(2), 664-676 (2007).

[16] Lo, S. T., Wee, H. M., Huang, W. C., An  integrated production-inventory model with  imperfect production processes and Weibull  distribution deterioration under inflation.  International Journal of Production  Economics, 106, 248–260 (2007).

[17] Ojha, D., Sarker, B. R., Biswas, P., An optimal  batch size for an imperfect production system  with quality assurance and rework.  International Journal of Production Research,  45:14, 3191-3214 (2007).

[18] Wee, H. M., Widyadana, G. A., Economic  production quantity models for deteriorating  items with rework and stochastic preventive  maintenance time. International Journal of  Production Research, 50 (11), 2940-2952 (2012).

[19] Chung, C. J., Widyadana, G. A., Wee, H. M.,  Economic production quantity model for  deteriorating inventory with random machine  unavailability and shortage, International  Journal of Production Research, 49(3), 883- 902 (2011).

[20] Chen, S. H., Wang, S. T., Chang, S. M.,  Optimization of fuzzy production inventory  model with repairable defective products  under crisp or fuzzy production quantity.  International Journal of Operations Research,  2 (2), 31-37 (2005).

[21] Halim, K. A., Giri, B. C., Chaudhuri, K. S.,  Fuzzy EPQ models for an imperfect  production system. International Journal of  Systems Science, 40 (1), 45-52 (2009).

[22] Roy, A., Maity, K., Kar, S., Maiti, M., A  production-inventory model with  remanufacturing for defective and usable items  in fuzzy-environment. Computers andIndustrial Engineering, 56, 87-96 (2009).

[23] Pan, E., Jin, Y., Wang, S., Cang, T., An  integrated EPQ model based on a control chart  for an imperfect production process.  International Journal of Production Research,  50 (23), 6999-7011 (2012).

[24] Chang, H. C., An application of fuzzy sets  theory to the EOQ model with imperfect  quality items. Computers and Operation  Research, 31, 2079-2092 (2004).

[25] Mula, J., Peidro, D., Poler, R., The  effectiveness of a fuzzy mathematical  programming approach for supply chain  production planning with fuzzy demand.  International Journal of Production  Economics, 128, 136-143 (2010).

[26] Islam, S., Roy, T. K., A fuzzy EPQ model with  flexibility and reliability consideration and  demand dependent unit production cost under  a space constraint: A fuzzy geometric  approach. Applied Mathematics and  Computation, 176, 531-544 (2006).

[27] Kazemi, N., Ehsani, E., Jaber, M. Y., An  inventory model with backorders with fuzzy  parameters and decision variables.  International Journal of Approximate  Reasoning, 51, 964-972 (2010).

[28] Mondal, S., Maiti, M., Multi-item  fuzzy EOQ models using genetic algorithm.  Computers and Industrial Engineering, 44 (1), 105-117 (2003).

[29] Pasandideh, S. H. R., Niaki, S. T. A., A  genetic algorithm approach to optimize a  multi-products EPQ model with discrete  delivery orders and constrained space. Applied  Mathematics and Computation, 195, 506-514 (2008).

[30] Pal, S., Maiti, M. K., Maiti, M.,  An EPQ model with price discounted  promotional demand in an imprecise planning  horizon via Genetic Algorithm. Computers and  Industrial Engineering, 57 (1), 181-187 (2009).

[31] Bhunia, A. K., Kundu, S., Sannigrahi, T.,  Goyal, S. K., An application of tournament  genetic algorithm in a marketing oriented  economic production lot-size model for  deteriorating items. International Journal of  Production Economics, 119 (1), 112–121 (2009).

[32] Zhang, R. Q., Kaku, I., Xiao, Y. Y.,  Deterministic EOQ with partial back ordering  and correlated demand caused by cross-sellingEuropean Journal of Operational  Research, 210 (3), 537-551 (2011).

[33] Zhao, P., Wang, H., Gao, H., Improved  particle swarm optimization algorithm for  stochastic EOQ models with multi-item and  multi-storehouse. Proceedings of the IEEE  International Conference on Information  Acquisition, August 20-23, Welhal, Shandong,  China (2006).

[34] Deng, J., Control problems of grey systems.  Systems and Control Letters, 1(5), 288–294  (1982).

[35] Eroglu, A., Sutcu, A., Sulak, H., An economic  production quantity model with random  defective rate in imperfect production  processes. Journal of Faculty of Engineering  and Architecture of Gazi University, 23(4),  923-929 (2008).

[36] Zadeh, L. A., Fuzzy Sets. Information Control,  8, 338-353 (1965).

[37] Tseng, M. L., A causal and effect decision  making model of service quality expectation  using grey-fuzzy DEMATEL approach. Expert  Systems with Applications, 36, 7738-7748  (2009).

[38] Deng, J., Introduction to grey system theory.  The Journal of Grey System, 1, 1–24 (1989).

[39] Liu, S., Lin, Y., Grey Information: Theory and  Practical Applications. Springer, Germany  (2006).

[40] Yamaguchi, D., Li, G. D., Chen, L. C., Nagai, M., Reviewing Crisp, Fuzzy, Grey and Rough  Mathematical Models. Proceedings of 2007  IEEE International Conference on Grey  Systems and Intelligent Service, Nov 18-20,  Nanjing, China (2007).

[41] Liu, S., Lin, Y., Grey Systems: Theory and  Applications. Springer, Germany (2010).

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing