AccScience Publishing / IJOCTA / Volume 4 / Issue 2 / DOI: 10.11121/ijocta.01.2014.00185
ENGINEERING APPLICATIONS OF AI

A case study of heterogeneous fleet vehicle routing problem: Touristic distribution application in Alanya

Kenan Karagul1 Ibrahim Gungor2
Show Less
1 Logistics Department, Honaz Vocational School, Pamukkale University, Honaz, Denizli, Turkey
2 Alanya Faculty of Business, Akdeniz University, Alanya, Antalya, Turkey
Received: 3 December 2013 | Published online: 21 April 2014
© 2014 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this study, Fleet Size and Mix Vehicle Routing Problem is considered in order to  optimize the distribution of the tourists who have traveled between the airport and the hotels in the  shortest distance by using the minimum cost. The initial solution space for the related methods are  formed as a combination of Savings algorithm, Sweep algorithm and random permutation  alignment. Then, two well-known solution methods named as Standard Genetic Algorithms and  random search algorithms are used for changing the initial solutions. Computational power of the  machine and heuristic algorithms are used instead of human experience and human intuition in order  to solve the distribution problem of tourists coming to hotels in Alanya region from Antalya airport.  For this case study, daily data of tourist distributions performed by an agency operating in Alanya  region are considered. These distributions are then modeled as Vehicle Routing Problem to calculate  the solutions for various applications. From the comparisons with the decision of a human expert, it is seen that the proposed methods produce better solutions with respect to human experience and  insight. Random search method produces a solution more favorable in terms of time. As a  conclusion, it is seen that, owing to the distribution plans offered by the obtained solutions, the  agencies may reduce the costs by achieving savings up to 35%.

Keywords
Tourism;tourist distribution;vehicle routing problem;fleet size and mix vehicle routing problem;heuristic algorithms.
Conflict of interest
The authors declare they have no competing interests.
References

[1] Cordeau, J. F., Laporte, G., Modelling and  optimization of vehicle routing problems. In  Handbook on Modelling for Discrete  Optimization, Springer, 151-181 (2006).

[2] Şen, E., KOBİ'lerin Uluslararası Rekabet  Güçlerini Artırmada Tedarik Zinciri  Yönetiminin Önemi. T.C. Başbakanlık Dış  Ticaret Müsteşarlığı İhracatı Geliştirme Etüd  Merkezi, Ankara (2006).

[3] Kocaman, S., Destinasyon Yönetimi  Kapsamında Marka Kimliğine Etki Eden  Faktörlerin Marka İmajına Etkisi: Alanya  Örneği. Akdeniz Üniversitesi, SBE,  Yayımlanmamış Doktora Tezi, Antalya  (2012).

[4] Baldacci, R., Battarra M., Vigo, D., Routing  a heterogeneous fleet of vehicles, Operations  Research / Computer Science Interfaces, 43,  3-27 (2008). 

[5] Dell'Amico, M., Monaci, M., Pagani C., Vigo, D., Heuristic approaches for the fleet  size and mix vehicle routing problem with  time windows. Transportation Science,  41(4), 516-526 (2007).

[6] Gendreau, M., Potvin, J. Y., Braysy, O., Hasle G., Lokketangen, A., Metaheuristic  for the Vehicle Routing Problem and its  Extensions: A Categorized Bibliography (2007). Available from: https://www.cirrelt.  ca/DocumentsTravail/CIRRELT-2007-27.pdf.  Accessed 15 April 2013.

[7] Gendreau, M., Laporte, G., Musaraganyi C., Taillard, E. D., A Tabu search heuristic for  the heterogeneous fleet vehicle routing  problem. Computers and Operations  Research, 26, 1153-1173 (1999). 

[8] Wassan N., Osman, I., Tabu search variants  for the mix fleet vehicle routing problem.  Journal of the Operational Research Society. 53, 768-782 (2002). 

[9] Choi E., Tcha, D. W., A column generation  approach to the heterogeneous fleet vehiclerouting problem. Computers and Operations  Research. 34, 2080–2095 (2007). 

[10] Penna, P. H. V., Subramanian A., Ochi, L.  S., An Iterated local search heuristic for the  heterogeneous fleet vehicle routing problem. Journal of Heuristics, 19(2), 201-232 (2011).

[11] Tütüncü, G. Y., An interactive GRAMPS  algorithm for the heterogeneous fixed fleet  vehicle routing problem with and without  backhauls. European Journal of Operational  Research, 201(2) 593–600 (2010). 

[12] Gencer, C., Kızılkaya Aydoğan E., Çetin, S.,  Simultaneous pick-up and delivery decision  support systems. in Decision Support  Systems, Advances. Croatia, INTECH, 203- 214 (2010).

[13] Çetin, S., Özkütük E., Gencer, C., Heterojen  araç filolu eş zamanlı dağıtım ve toplamalı  araç rotalama problemi için bir karar destek  sistemi. International Journal of Research  and Development. 3(1) 11-18 (2011). 

[14] Ochi, L., Vianna, D., Drummond L. M., Victor, A., A Parallel evolutionary algorithm  for the vehicle routing problem with  heterogeneous fleet. Parallel and Distributed  Processing, Lecture Notes in Computer  Science, 1388, 216-224 (1998). 

[15] Lima, C., Goldbarg, M., Goldbarg, E., A  Memetic algorithm for heterogeneous fleet  vehicle routing problem. Electronic Notes in  Discrete Mathematics, 18, 171-176 (2004). 

[16] Liu, S., Huang W., Ma, H., An Effective  genetic algorithm for the fleet size and mix  vehicle routing problems. Transportation  Research Part E, 45, 434-445 (2009).

[17] www.alanya.com.tr, Alanya Haritası. (2012)  Available from: http://www.alanya.cc/map?  lang=tr&catid=hotels&itemid=77. Accessed  29 December 2012.

[18] ALTSO, Alanya Ekonomik Rapor (2011), Alanya Ticaret ve Sanayi Odası, Alanya  (2012).

[19] Kay, M. G., Matlog: Logistics Engineering  Matlab Toolbox (2013) Available from:  http://www. ise. ncsu. edu/ kay/ matlog/ Accessed 16 February 2013.

[20] TÜİK, Türkiye Turizm İstatistikleri, Türkiye  İstatistik Kurumu, Ankara (2012).

[21] Güleş, H. K., Paksoy, T., Bülbül, H.,  Özceylan, E., Tedarik Zinciri Yönetimi,  Gazi Kitabevi, Ankara (2010).

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing