AccScience Publishing / IJOCTA / Volume 4 / Issue 1 / DOI: 10.11121/ijocta.01.2014.00162
APPLIED MATHEMATICS & CONTROL

Vector optimization with cone semilocally preinvex functions

Surjeet Kaur Suneja1 Meetu Bhatia1
Received: 11 March 2013 | Published online: 10 December 2013
© 2013 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper we introduce cone semilocally preinvex, cone semilocally quasi preinvex  and cone semilocally pseudo preinvex functions and study their properties. These functions are  further used to establish necessary and sufficient optimality conditions for a vector minimization  problem over cones. A Mond-Weir type dual is formulated for the vector optimization problem and  various duality theorems are proved

Keywords
Vector optimization
semilocally preinvex functions
cones
optimality
duality
Conflict of interest
The authors declare they have no competing interests.
References

[1] Ewing G.M., Sufficient Conditions for  Global Minima of Suitable Convex  Functional from Variational and Control  Theory. SIAM Review 19, 202-220 (1977). 

[2] Illes, T., Kassay, G., Theorems of the  Alternative and Optimality Conditions for  Convexlike and General Convexlike  Programming. Journal of Optimization  Theory and Applications 101(2), 243-257 (1999).

[3] Kaul, R.N., Kaur, S., Generalization of  Convex and Related Functions. European  Journal of Operational Research 9, 369- 377 (1982). 

[4] Kaul, R.N., Kaur, S., Sufficient  Optimality Conditions using Generalized  Convex Functions. Opsearch 19, 212-224 (1982).

[5] Kaul, R.N., Kaur, S., Generalized Convex  Functions, Properties, Optimality and  Duality. Technical Report, SOL., 84-4,  Stanford University, California (1984).

[6] Kaul, R.N., Lyall, V., Kaur, S., Semilocal  Pseudolinearity and Efficiency. EuropeanJournal of Operational Research 36, 402- 409 (1988). 

[7] Kaur, S., Theoretical Studies in  Mathematical Programming. Ph.D.  Thesis, University of Delhi, Delhi, India (1983). 

[8] Gupta, I., Vartak, M.N., Kuhn-Tucker  and Fritz John Type Sufficient Optimality  Conditions for Generalized Semilocally  Convex Programs. Opsearch 26, 11-27 (1989). 

[9] Mukherjee, R.N., Mishra, S.K.,  Multiobjective Programming with  Semilocally Convex Functions. Journal  of Mathematical Analysis and  Applications. 199, 409-424 (1996). 

[10] Preda, V., Optimality Conditions and  Duality in Multiobjective Programming  Involving Semilocally Convex and  Related Functions. Optimization 36, 219- 230 (1996). 

[11] Preda, V., Optimality and Duality in  Fractional Multiobjective Programming  involving Semilocally Preinvex and  Related Functions. Journal of  Mathematical Analysis and Applications  288, 365-382 (2003). 

[12] Preda V., Stancu-Minasian, J.M., Duality  in Multiobjective Programming involving  Semilocally Preinvex and Related  Functions. Glas. Math. 32, 153-165 (1997). 

[13] Stancu-Minasian, J.M., Optimality and  Duality in Fractional Programming  involving Semilocally Preinvex and  Related Functions. Journal of  Information and Optimization Science 23,  185-201 (2002).

[14] Suneja, S.K., Gupta, S., Duality in  Nonlinear Programming involving  Semilocally Convex and Related  Functions. Optimization 28, 17-29 (1993). 

[15] Suneja, S.K., Gupta, S., Vani, Optimality  and Duality in Multiobjective Nonlinear  programming involving   -Semilocally  Preinvex and Related Functions. Opsearch 44(1), 27-40 (2007).

[16] Weir, T., Programming with Semilocally  Convex Functions. Journal of  Mathematical Analysis and Applications  168 (1-2), 1-12 (1992)

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing