An Inverse recursive algorithm to retrieve the shape of the inaccessible dielectric objects

A regularized electromagnetic iterative inverse algorithm is formulated and implemented to reconstruct the shape of 2D dielectric objects using the far-field pattern of the scattered field data. To achieve this, an integral operator that maps the unknown boundary of the object onto the far-field pattern of the scattered field is defined and solved for the unknown boundary. The addressed inverse problem has an ill-posed nature and inherits nonlinearity. To overcome these, the proposed solution is linearized via Newton and regularized by Tikhonov in the sense of least squares. Besides, the dominance of the shadow region in the inverse-imaging process is exceeded by considering the superposition of multi-incoming plane waves, leading to less computational cost and a very fast inversion process. Comprehensive numerical analyses are carried out to ascertain the algorithm's feasibility, revealing that it is very efficient and promising.
[1] Tuz, M.(2017). Boundary values for an eigen- value problem with a singular potential. An International Journal of Optimization and Control: Theories & Applications (IJOCTA) , 7(3), 293–300. https://doi.org/10.11121 /ijocta.01.2017.00507
[2] Aydin, C., & Tezer, M. (2019). the DRBEM solution of cauchy MHD duct flow with a slip- ping and variably conducting wall using the well-posed iteration. (2019) An International Journal of Optimization and Control: Theo- ries & Applications (IJOCTA), 9(3), 76–85. https://doi.org/10.11121/ijocta.01.2 019.00677
[3] Karatas Akgul, E. (2018). Reproducing ker- nel Hilbert space method for solutions of a co- efficient inverse problem for the kinetic equa- tion. An International Journal of Optimiza- tion and Control: Theories & Applications (IJOCTA), 8(2), 141–151. https://doi.or g/10.11121/ijocta.01.2018.00568
[4] Ozmen, A. (2022). Multi-objective regres- sion modeling for natural gas prediction with ridge regression and CMARS. An Interna- tional Journal of Optimization and Control: Theories & Applications (IJOCTA) , 12(1), 56–65. https://doi.org/10.11121/ijoct a.2022.1084
[5] Acil, M., & Konuralp, A. (2021). Reconstruc- tion of potential function in inverse Sturm- Liouville problem via partial data. An Inter- national Journal of Optimization and Con- trol: Theories & Applications (IJOCTA) , 11(2), 186–198. https://doi.org/10.111 21/ijocta.01.2021.001090
[6] Sefer, A. (2022). Locally perturbed inacces- sible rough surface profile reconstruction via phaseless scattered field data. IEEE Trans- actions on Geoscience and Remote Sensing,, 60, 1–8. https://doi.org/10.1109/TGRS.2 021.3105257
[7] Bilgin, E., Cayoren, M., Joof, S., Cansiz, G., Yilmaz, T., & Akduman, I. (2022). Single- slice microwave imaging of breast cancer by reverse time migration. Medical Physics, 49(10), 599–6608. https://doi.org/10.100 2/mp.15917
[8] Dogu, S., Akinci, M. N., & Gose, E. (2022). Experimental moving target imaging in a nonanechoic environment with linear sam- pling method. IEEE Geoscience and Remote Sensing Letters, 18(3), 441–445. https://do i.org/10.1109/LGRS.2020.2976594
[9] Colton, D., & Kress, R. Smith, G. (2019). Ill- posed Problems. In: P. Holmes, S.S. Antman, K. Sreenivasan eds. Inverse Acoustic and Electromagnetic Scattering Theory. Wiley - 3rd ed. 4th ed. Springer, London. 95–118. https://doi.org/10.1007/978-1-4614-4 942-3_4
[10] Ghazi, F. F., & Tawfiq, L. N. M. (2024). Design optimal neural network based on new LM training algorithm for solving 3D- PDEs. An International Journal of Op- timization and Control: Theories & Appli- cations (IJOCTA), 14(3), 249–250. https: //doi.org/10.11121/ijocta.1519
[11] Ozmen, A. (2022). Multi-objective regres- sion modeling for natural gas prediction with ridge regression and CMARS. An Interna- tional Journal of Optimization and Control: Theories & Applications (IJOCTA) , 12(1), 56–65. https://doi.org/10.11121/ijoct a.2022.1084
[12] Kumar A., Kumar, M., & Goswami, P.(2024). Numerical solution of coupled sys- tem of Emden-Fowler equations using arti- ficial neural network technique. An Interna- tional Journal of Optimization and Control: Theories & Applications (IJOCTA) , 14(1), 62–73. https://doi.org/10.11121/ijoct a.1424
[13] Salucci, M., Arrebola, M., Shan, T., & Li, M. (2022). New frontiers in real-time in- verse scattering and electromagnetic imaging. IEEE Transactions on Antennas and Propa- gation, 70(8), 6349–6364. https://doi.org/ 10.1109/TAP.2022.3177556
[14] Desmal, A. (2022). A trained iterative shrinkage approach based on born iterative method for electromagnetic imaging. IEEE Transactions on Antennas and Propagation, 70(11), 4991–4999. https://doi.org/10.1 109/TMTT.2022.3205650
[15] Desmal, A., & Alsaei, J. (2024). Multifre- quency trained projection nonlinear frame- work for electromagnetic imaging with contrast-source landweber-kaczmarz. IEEE Geoscience and Remote Sensing Letters, 21, 1–5, Art no. 3002505. https://doi.org/10 .1109/LGRS.2024.3397694
[16] Yao, H. M., Sha, W.E.I.,& Jiang,L. (2019). Two-step enhanced deep learning approach for electromagnetic inverse scattering prob- lems. IEEE Antennas and Wireless Propa- gation Letters, 18(11), 2254–2258. https: //doi.org/10.1109/LAWP.2019.2925578
[17] Aydin, I., Guven, B., Sefer, A., & Yapar, A. (2022). CNN-based deep learning archi- tecture for electromagnetic imaging of rough surface profiles. IEEE Transactions on An- tennas and Propagation, 70(10), 9752–9763. https://doi.org/10.1109/TAP.2022.317 7493
[18] Song, L., Kuang, L., Han, Y., Wang, Y., & Liu, Q. H. (2018). Inversion of rough surface parameters from SAR images using simulation-trained convolutional neural net- works. IEEE Geoscience and Remote Sensing Letters, 15(7), 1130–1134. https://doi.or g/10.1109/LGRS.2018.2822821
[19] Aydin, I., Guven, B., Sefer, A., & Yapar, A.(2022). Recovery of impenetrable rough sur- face profiles via CNN-based deep learning ar- chitecture. International Journal of Remote Sensing, 43(15-16), 5658–5685. https://do i.org/10.1080/01431161.2022.2105177
[20] Wang, X., Zhu, J., Song, M., & Wu, W.(2022). Fourier method for reconstructing elastic body force from the coupled-wave field. Inverse Problems and Imaging, 16(2), 325–340. https://doi.org/10.3934/ipi. 2021052
[21] Sefer, A., Yapar, A., & Yelkenci, T. (2024). Imaging of rough surfaces by RTM method. IEEE Transactions on Geoscience and Re- mote Sensing, 62, 1–12, Art no. 2003312, doi: 10.1109/TGRS.2024.3374972 https://doi.org/10.1109/TGRS.2024.3374972
[22] Sefer, A., & Yapar, A., (2022). Inverse scat- tering by perfectly electric conducting (PEC) rough surfaces: An equivalent model with line sources. IEEE Transactions on Geo- science and Remote Sensing, 60, 1–9, Art no.2007109. https://doi.org/10.1109/TGRS .2022.3210657
[23] Blasten, E. L.K., & Liu, H. (2021). Scat- tering by curvatures, radiationless sources, transmission eigenfunctions, and inversescat- tering problems. SIAM Journal on Mathe- matical Analysis, 53(4), 3801–3837. https: //doi.org/10.1137/20M1384002
[24] Guo, Y., & Zhang, D. (2011). An opti- mization method for acoustic inverse obsta- cle scattering problems with multiple incident waves. Inverse Problems in Science and En- gineering, 19(4), 461–484. https://doi.or g/10.1080/17415977.2010.518286
[25] Bao, G., Li, P., Lin, J., & Triki, F. (2015). Inverse scattering problems with multi- frequencies. Inverse Problems, 31, 093001. https://doi.org/10.1088/0266-5611/ 31/9/093001
[26] Altundag, A., & Kress, R. (2012). On a two dimensional inverse scattering problem for a dielectric. Applicable Analysis, 91(4), 757-771. https://doi.org/10.1080/00036811 .2011.619981
[27] Qu, F., Yang, J., & Zhang, H. (2019). shape reconstruction in inverse scattering by an in- homogeneous cavity with internal measure- ment. SIAM Journal on Imaging Sciences, 12(2), 788–808. https://doi.org/10.113 7/18M1232401
[28] Cheng, Z., & Dong, H. (2023). Uniqueness and reconstruction method for inverse elastic wave scattering with phaseless data. Inverse Problems and Imaging, 18(12), 406–433.
[29] Borges, C., Gillman, A., & Greengard, L.(2017). High resolution inverse scattering in two dimensions using recursive linearization. SIAM Journal on Imaging Sciences, 10(2),641–664. https://doi.org/10.1137/16M1
[30] Borges, C., Rachh, M., & Greengard, L.(2023). On the robustness of inverse scat-tering for penetrable, homogeneous objects with complicated boundary. Inverse Prob-lems, 39(3), 035004. https://doi.org/10.1088/1361-6420/acb2ec
[31] Sefer, A., & Yapar, A. (2021). An iterative algorithm for imaging of rough surfaces sep- arating two dielectric media. IEEE Trans- actions on Geoscience and Remote Sensing, 59(2), 1041–1051. https://doi.org/10.110 9/TGRS.2020.2997637
[32] Johansson, T., & Sleeman, B. D. (2007). Re- construction of an acoustically sound-softob- stacle from one incident field and the far-field pattern. IMA Journal of Applied Mathemat- ics, 72(1), 96–112. https://doi.org/10.1 093/imamat/hxl026
[33] Zinn, A. (1989). On an optimization method for the full and the limited-aperture prob- lem in inverse acoustic scattering for a sound- soft obstacle. Inverse Problems, 5(2), 239–253. https://doi.org/10.1088/0266-5611/5/2/009
[34] Tsang, L., Kong, J. A., Ding, K.-H., & Ao, C. O. (2001). Scattering of Electromagnetic Waves, Numerical Simulations, 1st ed. Wi- ley, NY USA. https://doi.org/10.1002/ 0471224308
[35] Bourlier, C., Pinel, N., & Kubicke, G. (2013). Validation of the Method of Moments for a Single Scatterer. In: Joseph Saillard, ed. Method of Moments for 2D Scattering Prob- lems. Wiley - ISTE, NY USA, 31–72. https://doi.org/10.1002/9781118648674.ch2
[36] Abramowitz, M., & Stegun, A. (1964). Hand- book of Mathematical Functions with Formu- las, Graphs, and Mathematical Tables, 1st ed. Dover, NY USA.
[37] Bourlier, C., Pinel, N., & Kubicke, G. (2013). Integral Equations for a Single Scatterer: Method of Moments and Rough Surfaces. In: Joseph Saillard, ed. Method of Moments for 2D Scattering Problems. Wiley - ISTE, NY USA, 1–30. https://doi.org/10.1002/97 81118648674.ch1
[38] Ishimaru, A. (2017). Radiation from Aper- tures and Beam Waves. In: Tariq Samad, ed. Electromagnetic Wave Propagation Ra- diation and Scattering. 2nd ed. IEEE Press, Piscataway, NJ. 169–199. https://doi.org/ 10.1002/9781119079699.ch6
[39] Altundag, A (2012). On a Two-Dimensional Inverse Scattering Problem for a Dielectric. PhD Thesis. Georg-August-Universit¨at zu G¨ottingen.
[40] Fan, J., & Pan, J. (2004). Inexact Levenberg- Marquardt method for nonlinear equations. Discrete and Continuous Dynamical Systems Series B, 4(4), 1223–1232. https://doi.or g/10.3934/dcdsb.2004.4.1223
[41] Sefer, A. (2022). Optimization of inverse problems involving surface reconstruction: Least-square application. Proceedings of the 3rd AT-AP-RASC. 1–4. https://doi.org/ 10.23919/AT-AP-RASC54737.2022.9814221
[42] Potthast, R. (1994). Frechet differentiabil- ity of boundary integral operators in inverse acoustic scattering. Inverse Problems, 10(2), 431–447. https://doi.org/10.1088/0266-5611/10/2/016
[43] Kirsch, A., & Kress, R. (1988). Two meth-ods for solving the inverse acoustic scatter-ing problem. Inverse Problems, 4(3), 749–770. https://doi.org/10.1088/0266-5611/4/3/013