The effect of a psychological scare on the dynamics of the tumor-immune interaction with optimal control strategy

Contracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consistently exhibit stability under the defined conditions. The bifurcations occurring at the equilibrium sites are derived. Specifically, we obtained transcritical, pitchfork, and saddle-node bifurcation. Numerical simulations are employed to validate the theoretical study and ascertain the minimum therapy dosage necessary for eradicating cancer in the presence of psychological distress, thereby mitigating harm to patients. Fear could be a significant contributor to the spread of tumors and weakness of immune functionality.
[1] Gershenfeld, N. A. (1999). The nature of mathematical modeling. Cambridge university press, Cambridge, United Kingdom.
[2] Thirthar, A. A. (2023). A mathematical modelling of a plant-herbivore community with additional effects of food on the environment. Iraqi Journal of Science, 64(7), 3551-3566.
[3] Murray, J. D. (2002). Models for Interacting Populations. In: J. D. Murray, ed., Mathematical Biology: I. An Introduction. Springer, New York, 79-118. https://doi.org/10.1007/978-0-387 -22437-4_3
[4] Murray, J. D. (2002). Continuous Population Models for Single Species. In: J. D. Murray, eds., Mathematical Biology: I. An Introduction. Springer, New York, 1-43. https://doi.org/10 .1007/978-0-387-22437-4_1
[5] Shalan, R. N., Shireen, R., & Lafta, A. H.(2021). Discrete an SIS model with immigrants and treatment. Journal of Interdisciplinary Mathematics, 24(5), 1201-1206. https://doi. org/10.1080/09720502.2020.1814496
[6] Sk, N., Mondal, B., Thirthar, A. A., Alqudah, M. A., & Abdeljawad, T. (2023). Bistability and tristability in a deterministic prey-predator model: Transitions and emergent patterns in its stochastic counterpart. Chaos, Solitons & Fractals, 176, 114073. https://doi.org/10.1 016/j.chaos.2023.114073
[7] Chatterjee, A., & Pal, S. (2023). A predator-prey model for the optimal control of fish harvesting through the imposition of a tax. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(1), 68-80. https: //doi.org/10.11121/ijocta.2023.1218
[8] Sene, N. (2022). Theory and applications of new fractional-order chaotic system under Caputo operator. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 12(1), 20-38. https: //doi.org/10.11121/ijocta.2022.1108
[9] Hoang, M. T., Ngo, T. K. Q., & Truong, H. H. (2023). A simple method for studying asymptotic stability of discrete dynamical systems and its applications. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(1), 10-25. https: //doi.org/10.11121/ijocta.2023.1243
[10] Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee effects in ecology and conservation. OUP Oxford, Oxford, England. https://doi.org/10 .1093/acprof:oso/9780198570301.001.0001
[11] Allee, W. C., & Bowen, E. S. (1932). Studies in animal aggregations: mass protection against colloidal silver among goldfishes. Journal of Experimental Zoology, 61(2), 185-207. https: //doi.org/10.1002/jez.1400610202
[12] G´omez-Llano, M., Germain, R. M., Kyogoku, D., McPeek, M. A., & Siepielski, A. M. (2021). When ecology fails: how reproductive interactions promote species coexistence. Trends in Ecology & Evolution, 36(7), 610-622. https://doi.org/10.1016/j.tree.2021.03.003
[13] Jawad, S., Sultan, D., & Winter, M. (2021). The dynamics of a modified Holling-Tanner prey-predator model with wind effect. International Journal of Nonlinear Analysis and Applications, 12(Special Issue), 2203-2210.
[14] Al Nuaimi, M., & Jawad, S. (2022). Modelling and stability analysis of the competitional ecological model with harvesting.Communications in Mathematical Biology and Neuroscience, 2022, 1-29.
[15] Hassan, S. K., & Jawad, S. R. (2022). The Effect of Mutual Interaction and Harvesting on Food Chain Model. Iraqi Journal of Science, 63(6), 2641-2649. https://doi.org/10.24996/ijs.2 022.63.6.29
[16] Dawud, S., & Jawad, S. (2022). Stability analysis of a competitive ecological system in a polluted environment. Communications in Mathematical Biology and Neuroscience, 2022, 1-34.
[17] Hollingsworth, T. D. (2009). Controlling infectious disease outbreaks: Lessons from mathematical modelling. Journal of public health policy, 30, 328-341. https://doi.org/10.1057/jphp.2009.13
[18] White, P. J., & Enright, M. C. (2010). Mathematical models in infectious disease epidemiology. Infectious Diseases, 70-75. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / B 9 7 8 - 0 - 3 2 3-04579-7.00005-8
[19] Huppert, A., & Katriel, G. (2013). Mathematical modelling and prediction in infectious disease epidemiology. Clinical Microbiology and Infection, 19(11), 999-1005. https://doi.org/10.1111/14 69-0691.12308
[20] Kareem, A. M., & Al-Azzawi, S. N. (2021). A stochastic differential equations model for the spread of coronavirus COVID-19): the case of Iraq. Iraqi Journal of Science, 63(3), 1025-1035. https://doi.org/10.24996/ijs.2021.62.3.3 1
[21] Hameed, H. H., & Al-Saedi, H. M. (2021). Three-Dimensional Nonlinear Integral Operator with the Modelling of Majorant Function. Baghdad Science Journal, 18(2), 0296-0296. http s://doi.org/10.21123/bsj.2021.18.2.0296
[22] Kareem, A. M., & Al-Azzawi, S. N.(2022). Comparison Between Deterministic and Stochastic Model for Interaction (COVID-19) With Host Cells in Humans. Baghdad Science Journal, 19(5), 1140-1140. https://doi.org/10.21123/bsj.2022.6111
[23] Kirschner, D., & Panetta, J. C. (1998). Modeling immunotherapy of the tumor-immune interaction. Journal of Mathematical Biology, 37, 235-252. https://doi.org/10.1007/s002850050127
[24] Frascoli, F., Kim, P. S., Hughes, B. D., & Landman, K. A. (2014). A dynamical model of tumour immunotherapy. Mathematical Biosciences, 253, 50-62. https://doi.org/10.1 016/j.mbs.2014.04.003
[25] Villasana, M., & Radunskaya, A. (2003). A delay differential equation model for tumor growth.Journal of Mathematical Biology, 47, 270-294. https://doi.org/10.1007/s00285-003-0211-0
[26] Huang, M., Liu, S., Song, X., & Zou, X. (2022). Control strategies for a tumor-immune system with impulsive drug delivery under a random environment. Acta Mathematica Scientia, 42(3), 1141-1159. https://doi.org/10.1007/s10473 -022-0319-1
[27] Saeed, T., Djeddi, K., Guirao, J. L., Alsulami, H. H., & Alhodaly, M. S. (2022). A discrete dynamics approach to a tumor system. Mathematics, 10(10), 1774. https://doi.org/10.3390/math 10101774
[28] Iarosz, K. C., Borges, F. S., Batista, A. M., Baptista, M. S., Siqueira, R. A., Viana, R. L., & Lopes, S. R. (2015). Mathematical model of brain tumour with glia-neuron interactions and chemotherapy treatment. Journal of Theoretical Biology, 368, 113-121. https://doi.org/10.101 6/j.jtbi.2015.01.006
[29] Colli, P., Gilardi, G., & Sprekels, J. (2019). A distributed control problem for a fractional tumor growth model. Mathematics, 7(9), 792. https: //doi.org/10.3390/math7090792
[30] Alharbi, S. A., & Rambely, A. S. (2020). A new ODE-based model for tumor cells and immune system competition. Mathematics, 8(8), 1285. ht tps://doi.org/10.3390/math8081285
[31] Ghanbari, B. (2020). On the modeling of the interaction between tumor growth and the immune system using some new fractional and fractional-fractal operators. Advances in Difference Equations, 2020(1), 1-32. https://do i.org/10.1186/s13662-020-03040-x
[32] Arshad, S., Yıldız, T. A., Baleanu, D., & Tang, Y. (2020). The role of obesity in fractional order tumor-immune model. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys, 82(2), 181-196.
[33] Akman Yıldız, T., Arshad, S., & Baleanu, D. (2018). Optimal chemotherapy and immunotherapy schedules for a cancer-obesity model with Caputo time fractional derivative. Mathematical Methods in the Applied Sciences, 41(18), 9390-9407. https://doi.org/10.1002/mma.5298
[34] Alqudah, M. A. (2020). Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations. Alexandria Engineering Journal, 59(4), 1953-1957. https: //doi.org/10.1016/j.aej.2019.12.025
[35] Jawad, S., Winter, M., Rahman, Z. A. S., Al-Yasir, Y. I., & Zeb, A. (2023). Dynamical behavior of a cancer growth model with chemotherapy and boosting of the immune system. Mathematics, 11(2), 406. https://doi. org/10.3390/math11020406
[36] Letellier, C., Sasmal, S. K., Draghi, C., Denis, F., & Ghosh, D. (2017). A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis. Chaos, Solitons & Fractals, 99, 297-311. https://doi.org/10.101 6/j.chaos.2017.04.013
[37] De Pillis, L. G., & Radunskaya, A. (2001). A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. Computational and Mathematical Methods in Medicine, 3(2), 79-100. h t t p s : //doi.org/10.1080/10273660108833067
[38] De Pillis, L. G., Gu, W., & Radunskaya, A. E.(2006). Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. Journal of Theoretical Biology, 238(4), 841-862. https://doi.org/10.1016/ j.jtbi.2005.06.037
[39] Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D., & Zanette, L. Y. (2016). Fear of large carnivores causes a trophic cascade. Nature Communications, 7(1), 10698. https://doi.or g/10.1038/ncomms10698
[40] Pal, S., Pal, N., Samanta, S., & Chattopadhyay, J. (2019). Effect of hunting cooperation and fear in a predator-prey model. Ecological Complexity, 39, 100770. https://doi.org/10.1016/j.ecoc om.2019.100770
[41] Sarkar, K., & Khajanchi, S. (2020). Impact of fear effect on the growth of prey in a predator-prey interaction model. Ecological Complexity, 42, 100826. https://doi.org/10.1016/j.ecocom.2020.100826
[42] He, M., & Li, Z. (2022). Stability of a fear effect predator-prey model with mutual interference or group defense. Journal of Biological Dynamics, 16(1), 480-498. https://doi.org/10.1080/17 513758.2022.2091800
[43] Yousef, A., Thirthar, A. A., Alaoui, A. L., Panja, P., & Abdeljawad, T. (2022). The hunting cooperation of a predator under two prey’s competition and fear-effect in the prey-predator fractional-order model. AIMS Mathematics, 7(4), 5463-5479. https://doi.org/10.3934/math.2 022303
[44] Thirthar, A. A., Abboubakar, H., Khan, A., & Abdeljawad, T. (2023). Mathematical modeling of the COVID-19 epidemic with fear impact. AIMS Mathematics, 8(3), 6447-6465. https://doi.or g/10.3934/math.2023326
[45] Doshi, D., Karunakar, P., Sukhabogi, J. R., Prasanna, J. S., & Mahajan, S. V. (2021). Assessing coronavirus fear in Indian population using the fear of COVID-19 scale. International Journal of Mental Health and Addiction, 19, 2383-2391. https://doi.org/10.1007/s11469 -020-00332-x
[46] Gormley, M., Knobf, M. T., Vorderstrasse, A., Aouizerat, B., Hammer, M., Fletcher, J., & D’Eramo Melkus, G. (2021). Exploring the effects of genomic testing on fear of cancer recurrence among breast cancer survivors. Psycho-Oncology, 30(8), 1322-1331. https://doi.org/10.1002/po n.5679
[47] Niknamian, S. (2019). The impact of stress, anxiety, fear and depression in the cause of cancer in humans. American Journal of Biomedical Science and Research, 3(4), 363-370. https:// doi.org/10.34297/AJBSR.2019.03.000696
[48] Epstein, J. M., Parker, J., Cummings, D., & Hammond, R. A. (2008). Coupled contagion dynamics of fear and disease: mathematical and computational explorations. PloS One, 3(12), e3955. https://doi.org/10.1371/journal. pone.0003955
[49] Vrinten, C., McGregor, L. M., Heinrich, M., von Wagner, C., Waller, J., Wardle, J., & Black, G. B. (2017). What do people fear about cancer? A systematic review and meta-synthesis of cancer fears in the general population. Psycho-Oncology, 26(8), 1070-1079. https://doi.org/10.1002/po n.4287
[50] Lebel, S., Tomei, C., Feldstain, A., Beattie, S., & McCallum, M. (2013). Does fear of cancer recurrence predict cancer survivors’ health care use?. Supportive Care in Cancer, 21, 901-906. ht tps://doi.org/10.1007/s00520-012-1685-3
[51] de Pillis, L. G., & Radunskaya, A. (2003). - A mathematical model of immune response to tumor invasion. In: K. J. Bathe, ed., Computational Fluid and Solid Mechanics.Elsevier Science Ltd, 1661-1668. https://doi.org/10.1016/B978-008044046-0.50404-8
[52] Wang, X., Zanette, L., & Zou, X. (2016). Modelling the fear effect in predator-prey interactions. Journal of Mathematical Biology, 73(5), 1179-1204. https://doi.org/10.1007/ s00285-016-0989-1
[53] Das, A., Dehingia, K., Ray, N., & Sarmah, H. K. (2023). Stability analysis of a targeted chemotherapy-cancer model. Mathematical Modelling and Control, 3(2), 116-126. https://doi.org/10.3934/mmc.2023011
[54] Hubbard, J. H., & West, B. H. (2012).Differential equations: a dynamical systems approach: higher-dimensional systems. Vol. 18. Springer Science & Business Media, New York.
[55] Perko, L. (2013). Differential equations and dynamical systems. Vol. 7. Springer Science & Business Media, New York.
[56] Hirsch, M. W., Smale, S., & Devaney, R. L.(2012). Differential equations, dynamical systems, and an introduction to chaos. Academic press, New York. https://doi.org/10.1016/B978 -0-12-382010-5.00015-4
[57] Place, C. M. (2017). Dynamical Systems: Differential Equations, Maps, and Chaotic Behaviour. Routledge, London.
[58] Jawad, S. R., & Al Nuaimi, M. (2023). Persistence and bifurcation analysis among four species interactions with the influence of competition, predation and harvesting. Iraqi Journal of Science, 64(3) 1369-1390. https://doi.org/10 .24996/ijs.2023.64.3.30
[59] Jawad, S., & Hassan, S. K. (2023). Bifurcation analysis of commensalism intraction and harvisting on food chain model. Brazilian Journal of Biometrics, 41(3), 218-233. https://doi.org/10.28951/bjb.v41i3.609
[60] Lukes, D. L. (1969). Optimal regulation of nonlinear dynamical systems. SIAM Journal on Control, 7(1), 75-100. https://doi.org/10.113 7/0307007
[61] Kopp, R. E. (1962). Pontryagin Maximum Principle. In: G. Leitmann, ed., Mathematics in Science and Engineering. Elsevier, 255-279. https://doi.org/10.1016/S0076-5392(08)6 2095-0