AccScience Publishing / IJOCTA / Volume 12 / Issue 2 / DOI: 10.11121/ijocta.2022.1227
RESEARCH ARTICLE

Financial efficiency of companies operating in the Kosovo food sector: DEA and DEAHP

Esma Canhasi Kasemi1*
Show Less
1 Faculty of Education, University of Prizren, Prizren, Kosovo
IJOCTA 2022, 12(2), 128–136; https://doi.org/10.11121/ijocta.2022.1227
Received: 31 January 2022 | Accepted: 26 May 2022 |
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Data Envelopment Analysis (DEA) evaluates a large number of input and output  variables using mathematical programming techniques and analyzes the  effectiveness of similar decision making units (DMU). Unlike traditional methods,  the most important advantage of DEA is that the weights of input and output  variables can be defined by the analyzer. In this study, the limitations of the DEA  weights were determined using the AHP, which considers expert opinion. In  addition, an alternative judgment scale was used for the Saaty judgment scale,  which is used as a standard in the AHP method, and thus a more sensitive analysis  was performed. There have been studies dealing with the comparison of judgment  scales, but few studies on consistency sensitivity are needed. This point has also  been addressed in this study. Subsequently, the financial efficiency of 27  companies operating in the food sector in Kosovo was evaluated with the weightrestricted DEA model, first created using the unweighted DEA model and then the  AHP model, and the two models were compared. This paper is the first one of its  kind since there are no previous studies regarding the examination of the financial  efficiency of companies operating in the Kosovo food sector based on the DEAHP  method.

Keywords
Analytic Hierarchy Process (AHP)
Data Envelopment Analysis (DEA)
Decision making criteria
Efficiency measurement
Judgment scale
Conflict of interest
The authors declare they have no competing interests.
References

[1] Ulucan, A. (2002). Data Envelopment Analysis  Approach in Effieiency Measurement of ISO500  Companies: Evaluations Using Different Input  Output Components and Different Returns to Scale.  Ankara University SBF Journal, 57(2), 185-202.

[2] Oruc, K. O. (2008). Efficiency measurements in  fuzzy environment by using data envelopment  analysis and an application at universities.  Süleyman Demirel University, Doctoral  dissertation.

[3] Ozden, U. H. (2008). Efficiency evaluation of  foundation universities in Turkey by using Data  Envelopment Analysis (DEA), Istanbul University  Journal of the School of Business Administration,  37(2), 167-185.

[4] Sinuany‐Stern, Z., Mehrez, A., Hadad, Y. (2000).  An AHP/DEA methodology for ranking decision  making units, International Transactions in  Operational Research, 2(7), 109-124.

[5] Lee, S. K., Mogi, G., Shin, S. C., Kim, J. W. (2007).  An AHP/DEA integrated model for measuring the  relative efficiency of energy efficiency  technologies. In IEEE International Conference on  Industrial Engineering and Engineering  Management.

[6] Korpela, J., Lehmusvaara, A., Nisonen, J. (2007).  Warehouse operator selection by combining AHP  and DEA methodologies. International Journal of  Production Economics, 108(1-2), 135-142. 

[7] Sevkli, M., Koh, S. L., Zaim, S., Demirbag, M.,  Tatoglu, E. (2008). Hybrid analytical hierarchy  process model for supplier selection. Industrial  Management & Data Systems, 1(108), 122-142.

[8] Wang, Y. M., Liu, J., Elhag, T. M. (2008). An  integrated AHP–DEA methodology for bridge risk  assessment. Computers & Industrial Engineering,  54(3), 513-525.

[9] Erpolat, S., Cinemre, N. (2011). Notebook selection  in a hybrid approach: data envelopment analysis  based on analytic hierarchy process. Istanbul  University Journal of the School of Business  Administration, 40(2), 207-225. 

[10] Lin, M. I., Lee, Y. D., Ho T. N.(2011). Applying  integrated DEA/AHP to evaluate the economic  performance of local governments in China.  European Journal of Operational Research. 209(2),  129-140. 

[11] Keskin, B., Ulas, E. (2017). Does privatization  affect airports performance? A comparative analysis  with AHP-TOPSIS and DEA. New Trends in  Finance and Accounting. Springer, 335-345. 

[12] Çetin, K., Tuzkaya, G., Vayvay, O. (2020). A  mathematical model for personnel task assignment  problem and an application for banking sector. AnInternational Journal of Optimization and Control:  Theories & Applications (IJOCTA), 10(2), 147-158. 

[13] Pradhan, S., Olfati, M. and Gokulananda, P. (2019).  Integrations and applications of Analytic Hierarchy  Process with Data Envelopment Analysis- a  literature review. International Journal of the  Analytic Hierarchy Process. 11(2), 228-268. 

[14] Banker, R. D. Cooper, W. W., Seiford, L. M.,  Thrall, R. M., Zhu, J. (2004). Returns to scale in  different DEA models. European Journal of  Operational Research, 154(2), 345-362. 

[15] Kocakoç, I.D. (2003). Veri zarflama analizi’ndeki  ağırlık kısıtlamalarının belirlenmesinde analitik  hiyerarşi sürecinin kullanımı, Dokuz Eylul  Unıversıty Faculty of Economıcs And  Admınıstratıve Scıences Journal, 18(2). 

[16] Charnes, A., Cooper, W. W., Rhodes E. (1987).  Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. 

[17] Cooper, W. W., Seiford, M. L. and Zhu, J. (2004).  Handbook on Data Envelopment Analysis. Kluwer  Academic Publishers, 1-39.

[18] Ozdemir, Y., Alcan, P., Basligil, H., Cakrak, D.  (2018). A hybrid QFD-AHP methodology and an  application for heating systems in Turkey. An  International Journal of Optimization and Control:  Theories & Applications (IJOCTA), 8(1), 117-126.

[19] Lootsma, F.A. (1988). Numerical scaling of human  judgement in pairwise-comparison methods for  fuzzy multi-criteria decision analysis. In  Mathematical models for decision support.  Springer, F48, 57-88.

[20] Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill, New York, 1-72. 

[21] Salo, A. A., Hämäläinen, R. P. (1997). On the  measurement of preferences in the analytic  hierarchy process. Journal of Multi‐Criteria  Decision Analysis, 6(6), 309-319.

[22] Harker, P., Vargas, L. (1987). The Theory of Ratio  Scale Estimation: Saaty's Analytic Hierarchy  Process. Management Science, 33(11), 1383-1403.

[23] Doğan, N. Ö., Gencan, S. (2014). Performance  assessment using DEA/AHP integrated method: an  application on public hospitals in Ankara. Gazi  University Journal of Faculty of Economics and  Administrative Sciences, 16(2), 88-112.

[24] Ramanathan, R. (2006). Data envelopment analysis  for weight derivation and aggregation in the analytic  hierarchy process. Computers & Operations  Research, 5(33), 307. 

[25] Yıldırım, B. C. (2019). A New pairwise comparison  scale for analytic hierarchy pprocess. Master's  thesis of Social Sciences of Middle East Technical  University. 

[26] Garuti, C., & Salomon, V. A. (2012). Compatibility  indices between priority vectors. International  Journal of the Analytic Hierarchy Process, 4(2),  152-160. 

[27] Saaty, T. L., Peniwati, K. (2013). Group decisionmaking: Drawing out and reconciling differences. Pittsburgh: PA: RWS Publications. 

[28] B. Srdjevic, (2005). Combining Different  Prioritization Methods in The Analytic Hierarchy  Process Synthesis. Computers & Operations  Research, 32, 1897-1919.

[29] Scheel, H. Efficiency Measurement System (Ems). Holger Scheel’s Dea Page, [Online]. Available:  http://www.wiso.unidortmund.de/lsfg/or/scheel/ems/. [Accessed 15 09  2019].

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing